
AI,_ II'O"CE .-EPO.-T NO. 

SD-TR-e7-1US 
AEROSPACE REPORT NO. 

TR-1001(88Sh:t-2 

\ 
' 

Collected Results on Numerical Research 

3 

APRIL 19457 

Prepared by T. R. PARKIN, and L. J. LANDER 
Computation and Data Processing n er 

Electronics Division 
El Segundo Technical Operauons 
AEROSPACE CORPORATION 

Prepared for COMMANDER SPA YSTEMS DIVISION 
AIR FORCE SY TEMS COMMAND 

LOS ANGELES AIR FORCE TATION 
Los Angeles, California 

RECEIVED 

AUG 2 4 1967 

CFSTJ 

THIS DOCUMENT HAS BEEN APPROVED FOR PUBLIC 

RELEASf. AND SALE; ITS OISTkiBUTION IS UNLIMITED 



Air Force Report No. 
SSD-TR-67- 115 

Report    "o. 
TR-1001(9990)-2 

COLLECTED RESULTS ON NUMERICAL RESEARCH 

Prepared by 

T.  R.  Parkin 

and 

L.  J.   Lander 
Computation and Data Processing Center 

Electronics Division 

El Segundo Technical Operations 
AEROSPACE CORPORATION 

El Segundo,   California 

Contract No. AF 04(695)-1001 

April 1967 

Prepared for 

COMMANDER SPACE SYSTEMS DIVISION 
AIR FORCE SYSTEMS COMMAND 

LOS ANGELES AIR FORCE STATION 
Los Angeles,   California 

This document has been approved for public 
release and sale; its distribution is unlimited 



FOREWORD 

This report is published by the Aerospace Corporation,  El Segundo, 

California, under Air Force Contract No.  AF 04(695)-1001. 

This report, which document« research carried out from September 

1965 through February 1967, was submitced on 2 June 1967 to Capt.  Ronald J. 

Starbuck (SSTRT) for review and approval. 

The authors acknowledge with gi-atitude the contributions of Dr. 

J.   L. Selfridge who co-authored Section V,  and the assistance of Miss 

Pauline Parkin who prepared the checking program mentioned in Section II. 

Approved 

i/Jn-^. 
D.   R.  S.   McColL^Q€heral Manager 
Electronics Division 

Publication of this report does not constitute Air Force approval of 

the report's findings or conclusions.    It is published only for the exchange 

and stimulation of ideas. 

r.  Starbuck, Capt. ,  USAF 
Chiefs Space Environment and 

Electronics Branch 

-ii- 

mam 



—WP 

^ 

ABSTRACT 

A compilation of results from research in number 

theory involving the use of a digital computer is pre- 

sented.    The research is related to characteristics 

of prime numbers,   equal sums of powers of integers, 

differences of powers of integers,   equal sums of fifth 

powers, and the classic problem    f finding two equal 

sums of two biquadrates. 
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I.    INTRODUCTION 

This report describes research in the theory of numbers that involved the 

use of a digital computer. 

Sections II and III concern characteristics of prime numbers and Sections 

IV and V problems in equal sums of powers of integers.    In Section VI, 

the differences of powers of integers are discussed, while in VII and VIII 

two equal sums of fifth powers are considered.    Sections IX and X provide 

the results of an investigation of the classic problem of finding two equal 

sums of two biquadrates. 

The various sections of the report have been grouped for convenience. 

Although the sections are related in subject,  each one is self-contained. 
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II.    ON FIRST APPEARANCE OF PRIME DIFFERENCES 

A.        DISCUSSION 

There has long been interest in strings of consecutive composite numbers 

appearing among the natural numbers.    Most elementary texts on number 

theory include a discussion of how arbitrarily large gaps between consecu- 

tive primes can be constructed,  for example [l].    Such constructive 

techniques lead to rather large numbers, however, and lower occurrences 

have been studied [2],   [3] to gain insight into the subject. 

In 1961,  Gruenberger and Armerding examined the first six million primes 

(up to P = 104, 395,289) [4] on a computer and produced certain statistics 

covering these primes Cs].    They tabulated the primes forming the lower 

boundary for the first appearance of prime differences of prescribed 

lengths,  where all intervening numbers are composite,  up to the limit of 

the primes list.    The largest difference found between two consecutive 

primes was 220,  and the smallest difference whose first appearance was 

not found was 186. 

An algorithm for direct search for prime-differences (usable on a computer 

of limited storage capacity) proceeds as follows: 

a) Start at a known prime,   say P  ,  below which all differences of 
cL 

interest are known. 

b) Form P    + D,  where D is the smallest difference whose first a 
appearance is unknown. 

c) From the point P    + D,  test the successively smaller numbers 

for primality by trial division or other technique until a prime 

P,   is found. 
D 

d) If P.   > P  ,   replace P   by P.  and repeat the algorithm. 

e) If P,   = P  ,   start testing at P    + D,  and proceed to successively 

larger numbers until a prime P    is reached.    P    - P    is then a 0 r c c        a 
difference ^ D between successive primes,  and is recorded, 

unless such a difference has already occurred. 

3- 
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f)      Update D,  if necessary,   to the next larger difference whose first 

appearance is unknown; replace P   by P  ,  and repeat the algorithm. 
3. C 

A computer program for the CDC 3200 was written to implement this 
9 

algonlam,  and Table I through the range 0 < P < 1. 46 x 10    represents 

the data obtained from this program. 

The algorithm itself guarantees that no difference of interest (i. e. ,  ^ 

smallest difference whose first appearance is unknown) will escape notice, 

while a separate check was run on the data in Table I.    This check took 

the form of another computer program which read the Table I data as in- 

put,  established the primality of P    and P,   by testing for divisibility by 

primes up to the square root of P    or P, ,  and explicitly exhibited all the 

prime factors of each odd number between the two primes.    Thus,  the 

differences listed are verified to be exactly as long as stated.    Since all 

previous results in [5] were exactly duplicated (items of Table I for 

D * 184 and D = 196, 198, 210, 220),  the data may be regarded as accurate. 

The primality testing process was designed to operate without using 

an extensive table of primes,   while,  at the same time,   being made as 

rapid as practicable.    First,   the numbers to be tested were required to 

be prime to 210,    Since a sequence of consecutive numbers was being 

tested,  a single division by 210 followed by a table lookup in a table of 

210 positions sufficed to exclude all numbers not prime to 210.    Each 

entry of the table actually pointed to the next eligible number to be tested. 

Secondly,   division by a few small primes was used.    Since the ranges of 

interest quickly exceeded the  single precision word length of the computer 

(24 bits),   the 48-bit hardware arithmetic of the machine was used.    How- 

ever,   in order to avoid double precision division as long as possible, 

the numbers being tested were reduced to single precision by subtraction 

of self-adjusting multiples of groups of small primes prior to division 

by those primes.    The final step was division by all odd numbers prime 

to 6 (by alternately adding 2,   then 4,  to an appropriate starting prime) 

and less than the square root of the number tested,   in order to verify 

the primality of the end points for the algorithm,   and to determine that 
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intervening numbers were composite.    Of course,  as soon as any eligible 

number being tested was found to be composite,  it was rejected,  and the 

next eligible number was selected for testing.    Since there was no room 

in the program to store a table of pseudoprimes to the base 2,   experiments 

with the converse of Fermat's Theorem to detect composite numbers 

were dropped when it was noted that the program spent the majority of 

its running time verifying the primality of the end points,   rather than 

eliminating composite numbers between the end points. 

With the availability of a larger computer memory in which to store a 

table of primes and their starting points with respect to a fixed field 

of bits,   it becomes feasible to use a sieve technique for extending this 

search.    However,  with a very limited computer memory,   the algorithm 

given above has the advantage of requiring only a table of previously 

found differences,   and a starting point for each run,  and thus could be 

used as a small background problem. 

A program for the CDC 6609 was written to implement a sieve technique 

for generating and examining gaps in primes.    This program occupied 

considerably more memory but ran significantly faster (partially due to 

an increase in computer speed) than the program described above.     The 

sieve program allocated a block of computer memory in which consecutive 

bits represented the  successive odd integers.    A table of the first 

ten thousand primes was generated and stored by the program during 

initialization.     Another table of starting points (i.e. ,   index of the first 

bit in the  field corresponding to a multiple of each prime in the  stored 

table) for marking by each prime in the sieve field was also generated 

and saved.     The program then cycled through successive bit fields 

marking bits corresponding to the odd composite numbers,   then searched 

the field for gaps of interest.    End effects at the boundaries of the sieve 

fields wer^ noted so that gaps of interest would not be missed.     Table I 
9 10 for 1. 46 x 1 0    < P < 1. 096 x 10      presents the results obtained from 

this program. 

In private correspondence  Daniel Shanks  suggested the possibility of 

extending Table I in  .2] over the new differences found.     Accordingly, 
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Table I shows log P./VD - 1, with each maximal gap D marked with an 

asterisk.    Maximal gaps,  according to Shanks,  are those larger than any 

preceding gap in the sequence of primes.    These data tend to support the 

conjectured relation in [2], namely that log P.-^ N/D - 1 for maximal gaps, 

and also, possibly,   for all gaps at the point of their first appearance. 

B.   REFERENCES 
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Math.  Comp. , v.   18,  1964, pp.  646-650. 

3. Selmer M.   Johnson,  "An Elementary Remark on Maximal Gaps 
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Million Prime Numbers," paper P-2460,   The RAND Corp. ,   Santa 
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III.    CONSECUTIVE PRIMES IN ARITHMETIC PROGRESSION 

A.        DISCUSSION 

A. Schinzel and W.   Sierpinski [l] conjectured tha:. there exist arbitrarily 

long arithmetic progressions formed of consecutive prime numbers. 

Sierpinski stated in [2] that a progression of five consecutive primes 

had not yet been found.    A direct computer search showed that the first 

such progression has the common difference d = 30 and begins with the 

prime 9,843,019.    The first progression of six consecutive primes 
g 

begins with 121, 174,811 and also has d = 30.    Up to the limit 3 x 10 

there are 25 other progressions of five consecutive primes,  all with 

d = 30; there are no other progressions of six consecutive primes. 

The reviewer points out that recently a much larger quintuplet, beginning 

with 10000024493,  and again having d = 30,  was recorded [3],  but with- 

out reference to Sierpinski's remark.    The smaller set that we found, 

and the single sextuplet,   may still be worth recording. 

B. REFERENCES 

1. A.  Schinzel and W.   Sierpinski,  "Sur certaines hypotheses concernant 
les nombres premiers," Acta Arith. ,  v.   4,   1958,  p.   191. 

2. W.  Sierpinski,  A Selection of Problems in the Theory of Numbers, 
MacMillan,  New York,   1964, p.   lUb. — 

3. M.  F.  Jones,  M.   Lai,and W.  J.   Blundon,   "Statistics on Certain Large 
Primes," Math.   Comp.   (to appear). 

13- 



r^ 

IV.   A COUNTEREXAMPLE TO EULER'S SUM OF POWERS CONJECTURE 

A.        DISCUSSION 

A search was conducted on the CDC 6600 computer for non-trivial solutions in 

non-negative integers of the Diophantine equation 

5        5 ^ x j + x2 + • • • x    5        5 + x    = y n      ' n * 6. (I) 

In general,  to decompose t as the sum of n fifth powers,assume s is the largest. 

Then for each s in the range 

(i)1/5s.st1/5 
n 

5 5 a decomposition is sought in which t - s    is the sum of n - 1 fifth powers each £ s  . 

Applying the algorithm repeatedly, a final decomposition is reached of the form 

U = V    + w 

in which w $ v and each v in the range (■«-) ^ v ^ u        is considered.    Since 
5 x    s x (mod 30) for each integer x, we require w ■ u - v (mod 30).    A precal- 

culated table of fifth powers was employed and table lookup replaced the taking 

of fifth roots in determining limits on the x.. 

For n = 6, there are only ten primitive solutions of (1) in the range y i 100 and 

these are given in Table I. The least two of these were obtained by A. Martin 

(Reference 1).    Among the new solutions was 

19    + 43    + 46° + 47° + 67    = 723 

which is the least solution of (1) with n = 5.    The search was then specialized 

to n = 5, and the four solutions given in Table II are the only primitive solutions 

over the range y £ 250.    The third case (y = 107) is the least solution given by 

Sastry's identity (Reference 2) 

(75 v5 - u5)5 + (u5 + 25v5)5 + (u5 - 25v5)5 + (10 uV)5 + (50 uv4)5 = (u5 + 75v5)5 

for u = 2,  v = 1. 

15- 



^anp^ 

The fourth case was the unexpected result 

5 5 5 5 5 21° + 84    + HO3 + 133    = 144 

which is a counterexample to Euler's conjecture (Reference 3) that at least 

k positive k     powers are required to sum to a k     power,  except for the trivial 

case of one k     power:   y    = y  .    The search was again specialized to n = 4 

over the range y § 750,  but no further primitive solutions exist in that range. 

Table II.    All Primitive Solutions of Xj + x^ + x, + x4 + x5 + x? = y5   ,    y S 100 

4 5 6 7 9 11 12 

5 10 11 16 19 29 30 

15 16 17 22 24 28 32 

13 18 23 31 36 66 67 

7 20 29 31 34 66 67 

0 19 43 46 47 67 72 

22 35 48 58 61 64 78 

0 21 23 37 79 84 94 

4 13 19 20 67 96 99 

6 17 60 64 73 89 99 

Table III.  All Primitive Solutions of x^ + x^ + x^ + x^ + x| = y5   ,    y * 250 

19 43 46 47 67 72 

21 23 37 79 84 94 

7 43 57 80 100 107 

0 27 84 110 133 144 

B. REFERENCES 

1. A.   Martin,   Bull,   Phil.   Soc.   Wash. ,   10,   1887,   107,   in Smithsonian Miscel. 
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2. S.   Sastry, Journal London Math.   Soc. ,  9 (1934),   p.   242. 

3. L.   E.   Dickson,  History of the Theory of Numbers,   v.   2,   p.   682. 
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V.    A SURVEY OF EQUAL SUMS OF LIKE POWERS 

INTRODUCTION 

The Diophantine equation 

x, + x, + • • •  + x^ = y1+y7+
,,-y l^m^n (1) 1     "2 m     M   '  '2 

has been studied by numerous mathematicians for many years and by various 

methods [l],   [2].    We recently conducted a series of computer searches 

using the CDC 6600 to identify the sets of parameters k,  m,  n for which 

solutions exist and to find the least solutions for certain sets.    This section 

outlines the results of the computation,  notes some previously published 

results,  and concludes with a table showing, for various values of k and m, 

the least n for which a solution to (1) is known. 

We restrict our attention to k * 10.    We assume that the x. and y. are 

positive integers and x. / y..    We do not distinguish between solutions 

which differ only in that the x. or y. are rearranged.    We will refer to (1) 

as (k. m. n) and say that a primitive solution to (k. m. n) is one in which 

no integer > 1 divides all the numbers x. ,  x,,  • • ■  x    ,  y. ,  y-,   • • •  y . 

Putting 

z = E   x. = E   y. , 

we order the primitive solutions according to the magnitude of z and 

denote the r     primitive solution to (k. m. n) by (k. m. n)  .     Where we 

refer to the range covered in a search for solutions,  we mean the upper 

k k limit on z.    The notation (x., x2,   • • • ,  x    )    = (y,.  y^,   • • • ,   y  )    means 
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m    k        n     k S   x.    =   E   v. .    Any parametric solution discussed does not include all 
1      l 1     J 
solutions unless otherwise stated. 

B. SQUARES AND CUBES 

For k = 2 the general solution of the Pythagorean equation (2. 1.2) is well 

known [2, pp.   165-170J.    Many solutions in small integers and various 

parametric solutions have been given for (2. l.n) with n s 3.    The general 

solution of (2. 2. 2) is known [ 2,  p.  252].    Solutions to (2. 2, n) with n > 3 

and (2.m.n) with m > 3 are numerous. 

The impossibility of solving (k. 1.2 with k * 3 is Fermat's last theorem, 

which has been established for k < 25000 [3].    The general solution of 

(3. 1.3) in rationals is attributed to Euler and Vieta [2,  p.   550-554] and 

also produces all solutions to (3. 2. 2) if the arguments are properly chosen. 

There are many solutions in small integers and various parametric solu- 

tions to (3. l.n) with n > 4 and to (3.m.n) with m > 2 [2,  pp.   563-565]. 

C. FOURTH POWERS 

(4. 1. n) -- For n - 3,   no solution is known.     M.   Ward [4] developed con- 

gruential constraints which,   together with some hand computing,   allowed 

4        4        4        4 
him to show that x    = y,   -1- y?  + y     has no solution if x ^ 10, 000.     The 

authors extended the  search on the computer using a similar method and 

verified that there is no solution for x ^ 220, 000.     Ward showed that  if 

4 4        4        4 x    _ V i   + YT 
+ VS  1S a primitive solution,   it may be assumed that x,   y.r  1 

(mod 2),   y,,   y,  ^ 0 (mod 8) and either x -  y.   or x + y.   is H 0 (mod 1024). 

I 4 ALso x   |    i (.nod 5), or else all y. would be = 0 (mod 5), since u    = 0 or  1 

according as u - 0 or u  f 3 (mod 5).    The computer program generated 
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4        4 all numbers M = (x    - y.)/2048 with 0 < y. < x, x prime to 10 and y.  = ± x 

4 4 (mod 1024).    Tests were applied to M = (y?/8)    + (y.,/8)    to reject cases in 

which a solution would not be primitive or M could not be the sum of two 

biquadrates.     If M passed all the tests,   its decomposition was attempted 

by trial using addition of entries in a stored table of biquadrates (27500 

entries for x s 220, 000 = 8- 27500).     The tests were 

(1) M must be = 0,   1, or 2 (mod 16) and (mod 5) 

(2) M must not be ■ 7,   8,or 11  (mod 13) and must not be m 4, 5, 6, 9, 13, 

22 or 28 (mod 29) 

(3) x and y.   must not both be divisible by an odd prime p s 3,   5 or 7 
4 

(mod 8) for if so,  p    divides M,   p divides y- and y^.and the solution 

is not primitive 

(4) M must not have a factor p where p is an odd prime not a 1 (mod 8) 

4 2 3 unless p    also divides M.    In this case p divides y    and y , and in the 
4 

decomposition by trial M can be replaced by M/p    (here tests were 

made only for p < 100). 

Of approximately 19,200,000 initial values of M,   only 22,400 required the 

trial decomposition. 

For n = 4,   R.   Norrie [ 5] found the smallest solution (353:4 =  (30, 120, 272, 3! ^4. 

J.   O.   Patterson [28] found (4. 1. 4), and J.   Leech [6] found the next six primitive 

solutions on the EDSAC 2 computer.     S.   Brudno   [7]   gave another primitive 

solution,   the 14      in our Table IV.    The authors exhaustively searched the 
4 

range 8002    using Leech's method of finding the 23 primitives listed in 

Table IV.    No parametric solution has been found for (4. 1.4),   although the 

general solution is known for (3. 1. 3) and a parametric  solution  (discussed 

later) is known for (5. 1. 5). 
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Table IV 

Primitive Solutions of (4. 1. 4) for z * (8002)' 

4 r 
i 

4      2     4 
x,   = Z/   y. 

1       i    7J 

i Xl yi yz y3 ^4 Ref. 

1 353 30 120 272 315 [5] 

2 651 240 340 430 599 [28] 

3 2487 435 710 1384 2420 [6] 

4 2501 1130 1190 1432 2365 [6] 

5 2829 850 1010 1546 2745 [6] 

6 3723 2270 2345 2460 3152 [o] 

7 3973 350 1652 3230 3395 [6] 

8 4267 205 1060 2650 4094 [6] 

9 4333 1394 1750 3545 3670 

10 4449 699 700 2840 4250 

11 4949 

5281 

380 1660 1880 4907 

12 1000 1120 3233 5080 

13 5463 410 1412 3910 5055 

14 5491 955 1770 2634 5400 [7] 

15 5543 30 1680 3043 5400 

16 5729 1354 1810 4355 5150 

17 6167 542 2770 4280 5695 

18 6609 50 885 5000 5984 

19 6801 1490 3468 4790 6185 

20 7101 1390 2850 5365 6368 

21 7209 160 1345 2790 7166 

22 7339 800 3052 5440 6635 

23 7703 2230 3196 5620 6995 
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For n 2 5 there exist many solutions in small integers.     (4. 1.5).  is 

4 4 (5)    = (2, 2, 3, 4, 4)  .    Several parametric solutions to (4. 1. 5) are known 

due to E.   Fauquembergue   [8],    C.   Haldeman    [9],   and A.   Martin [10]. 

(4. 2. n) -- For n = 2 the least solution is (59, 158)4 = (133, 134)4.    Euler  [ ll] 

gave a two-parameter solution and A.  Gerardin [ 12] gave an equivalent but 

simpler form of this solution.    Several of the smaller primitive solutions 

were found by Euler,  A.   Werebrusow,  and Leech [ 13], and a recent com- 

puter search by Lande: and Parkin [ 14] extended the list of known primitives 

to 3 1.     More recently we have increased this to a total of 46 primitives by 

a complete search of the  range 5. 3 x 10      and the  15 new primitives are 

listed in Table V.    The general solution is not known. 

4 4 For n 2 3 there are many small solutions.     (4. 2. 3).  is (7, 7)    = (3, 5, 8)   . 

Several parametric solutions are known for (4.2. 3) due to Gerardin  [ 15] 

and F.   Ferrari [16]. 

(4. m. n) -- For m ^ 3,   solutions in small integers are numerous.     Parametric 

solutions to (4. 3. 3) were given by Gerardin [ 17] and Werebrusow [ 18]. 

(4.3. 3)1 is (2.4,7)4 = (3   6. 6)4. 

D.    FIFTH POWERS 

(5. l.n) -- Forn = 3,  no solution is known.     Lander and Parkin [l9],   [20] 

found (5. 1.4). to be (144)5 =  (27.84, 110. 133)5.     This disproved Euler's 

conjecture [2, p.   648] that (k. l.n) has no solution if 1  < n < k.    No further 

primitive solutions to (5. 1. 4) exist in the range up to 765   . 

For n = 5.  S.   Sastry and S.   Chowla f 2l] obtained a two-parameter solution 

yielding (107)    = (7, 43, 57. 80, 100)    as its minimal primitive; this solution 
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Table V 

Primitive Solutions of (4. 2. 2) for 7. 5 x 101 5 s z s 5. 3 x 1016 

4,4        44 
z = Xj  + xz = yj + y2 

i Xl X2 ^i y2 
z 

*32 6262 8961 7234 8511 7 98564 45223 00177 

33 5452 9733 7528 9029 9 85755 13638 85937 

34 3401 10142 7054 9527 10 71400 42234 80497 

35 5277 10409 8103 9517 12 51457 36160 92402 

36 3779 10652 8332 9533 13 07827 22453 98097 

37 3644 11515 5960 11333 17 75781 85225 58321 

38 152 5 12234 3550 12213 22 40674 37332 52161 

**39 2903 12231 10203 10381 22 45039 16406 17602 

40 1149 12653 7809 12167 25 63324 34950 11682 

41 5121 13472 9153 12772 33 62808 84147 85537 

42 5526 13751 11022 12169 36 68751 70593 08977 

43 6470 14421 8171 14190 45 00187 64129 98081 

44 6496 14643 11379 13268 47 75551 49900 03857 

45 261 14861 8427 14461 48 77442 72266 31682 

46 581 15109 8461 
1 

14723 52 11273 11403 26882 

For solutions to (4. 2, 2) for i  =  1  to 31  see Lander and Parkin  [ 14], 

This  solution was found by Euler [Z,   p.   644]. 
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is (5. 1. 5)..    Lander and Parkin [20] found (5. 1. 5)1 and (5. 1. 5)2 to be 

{72)5 = (19. 43, 46, 47, 67)5 and (94)5 = (21,23. 37>79,84)5.    More recently 

5 
we searched the range up to 599   and found the twelve primitive solutions 

given in Table VI. 

For n ^ 6 there are solutions in moderately small integers,    (b. 1. 6).   is 

(12)    = (4, 5, 6, 7, 9, 1 1)    found by A.   Martin [22].     The first eight primitive 

solutions to (5. 1. 6) are given in [20].    (5. 1. 7^  is (23)5 = H, 7, 8, 14, 15, 18, 20)5. 

(5. 2. n) -- No solution is known for n ^ 3.    An exhaustive search by the 

authors verified that there is no solution to (5. 2. 2) in the range up to 

14 12 2. 8 x 10      or to (5. 2. 3) in the range up to 8x10 Sastry's parametric 

solution for (5. 1. 5) mentioned above gives for certain values of its arguments 

solutions to (5. 2. 4),   the smallest being (12,3 8)     ~  (5,1^,25, 37)  .which is 

(5. 2.4)-.    K.   Subba Rao [23] found (3,2 9)5 =  (4, 1 0. 20. 28)5> which is (5. 2. 4). . 
C i 

Table VII lists the ten primitives which exist in the  range up to 2 x  i 0 

For n £ 5,there are  solutions in moderately small integers.  (5. 2. 5)     is 

(1.22)5 = (4, 5, 7, 16, 21)5 due to Subba Rao [23].     We give the first six 

primitives for (5. 2. 5) in Table VIII. 

(5. 3. n) -- The first solutior known for n  -  3 w^s  (49. 75, 107)     =  (39   92. lOO)5 

due to A.   Moessner [29]; this is (5. 5. i)   .     H.   P.   F.   Swmne rton-Dye r gave 

two separate, two-par^mete r solutions [30].     We give the 45 primitives  in 

the  range up to 8 x  10       ir  Table IX.     Kor n ^ 4.   solutions in small integers 

are plentiful.     (5. 3. 4)1   is  O^^^  -   (l , 8, 14, 27)5 due to Subba Rao   [23]. 

A two-parameter solution to (5. i. 4) was given by G.   Xeroudakes   «nd 

A.   Moessner  [24]. 
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Table VI 

Primitive Solutions of (5. 1. 5) for z s 599" 

5^5 
z = x,   =2.   y. 

1      J 1 

i xl ?! ^2 y3 ^4 ^5 Ref. 

1 72 19 43 46 47 67 [20] 

2 94 21 23 37 79 84 [20] 

3 107 7 43 57 80 100 [21] 

4 365 78 120 191 259 347 

5 415 79 202 258 261 395 

6 427 4 26 139 296 412 

7 435 31 105 139 314 416 

8 480 54 91 101 404 430 

9 503 19 201 347 388 448 

10 530 159 172 200 356 513 

11 553 218 276 385 409 495 

12 575 2 298 351 474 500 
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Table VII 

Primitive Solutions of (5. 2. 4) for z ^ 2 x 10 10 

z = E   x.   =  Z   y. 
1     J        1      J 

i xl x2 yi ^2 y3 y4 
z Ref.  1 

1 3 29 4 10 20 28 205 11392 [23] 

2 12 38 5 13 25 37 794 84000 [21] 

3 28 52 26 29 35 50 3974 14400 

4 61 64 5 25 62 63 19183 38125 

5 16 85 6 50 53 82 44381 01701 

6 31 96 56 63 72 86 81823 56127 

1  7 14 99 44 58 67 94 95104 38323 

8 63 97 11 13 37 99 95797 76800 

9 25 106 48 57 76 100 1 33920 21401 

10 54 111 58 76 79 102 1 73097 46575 
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Table VIII 

Primitive Solutions of (5. 2. 5) for z ^ 2. 8 x 10 

z = L  x.   = E   y. 
1     J       1      J 

8 

i xl X2 *! ^2 y3 ^4 y5 z 

«1 1 22 4 5 7 16 21 51 53633 

2 23 29 9 11 14 18 30 269 47492 j 

3 16 38 10 14 26 31 33 802 83744 

4 24 42 4 22 29 35 36 1386 53856 

5 30 44 8 15 17 19 45 1892 16224 | 

| 6 36 42 5 6 26 27 44 1911 57408 

The first solution is due to Subba Rao [23] 
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Table IX 

Primitive Solutions of (5. 3, 3) for z ^ 8 x 10 12 

is 1     5 Z   y. 
1     J        1     J 

i Xl x2 X3 yi ^2 y3 z 

1 24 28 67 3 54 62 13752 98099 

2 18 44 66 13 51 64 14191 38368 

3 21 43 74 8 62 68 23700 99168 

4 56 67 83 53 72 81 58398 97526 

5* 49 75 107 39 92 100 1 66810 39431 

6 26 85 118 53 90 116 2 73265 12069 

7 38 47 123 1 89 118 2 84616 37018 

8 73 96 119 68 106 114 3 40903 35168 

9 39 56 136 3 97 131 4 71668 30151 

10 13 35 142 17 95 138 5 77882 32400 

11 28 32 155 91 94 150 8 95168 61675 

12 65 94 152 42 129 140 8 96361 42881 

13 63 67 169 9 131 159 14 02010 53499 

14 68 137 170 36 140 169 19 17013 58025 

15 43 109 181 13 159 161 20 97974 92893 

16 74 113 182 61 129 179 22 03336 44849 

17 3 9 142 186 28 167 172 28 04458 41607 

18 44 55 201 18 152 190 32 87486 01600 

19 58 101 204 in 145 195 36 44723 14293 

20 18 31 215 10 183 191 45 94319 03094 

21 19 168 216 11 183 209 60 40152 82243 

22 5 145 224 153 157 214 62 80466 i.2374 

23 27 106 229 12 122 228 64 31599 96832 

24 151 166 233 126 208 216 89 12718 82720 

25 59 139 248 2 3 

1 

184 239 99 07237 889bu 

This solution was found by A.   Moessner   [29]; 
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Table IX (Concluded) 

Primitive Solutions of (5. 3. 3) for z < 8 x 1012 

z = Sx?  = Zy5 

i xl x2 X3 y\ ^2 ^3 z 

26 157 193 234 147 218 219 106 47575 48174 

27 2 97 258 35 125 257 115 17249 93057 

28 3 121 264 163 185 250 130 83259 82668 

29 97 181 274 67 227 258 174 72267 67782 

30 99 105 286 30 179 281 193 57802 02300 

31 132 154 283 80 219 270 194 19238 97099 

32 106 137 288 201 219 261 204 29996 35401 

33 40 168 289 3 215 279 214 99241 22017 

34 136 158 294 71 249 268 234 15192 15168 

35 193 229 282 179 259 266 268 09353 50774 

36 107 229 293 93 259 277 280 32137 94149 

37 31 173 307 7 201 303 288 20348 39551 

38 102 118 310 49 270 271 289 68334 85600 

39 116 124 310 21 235 294 291 32347 67200 

40 30 39 331 65 224 321 397 33103 34850 

41 119 232 328 89 289 301 449 23488 61399 

42 108 181 348 53 246 338 531 27877 53637 

43 114 211 364 52 298 339 682 75705 13699 

44 172 206 364 102 303 337 691 15935 15232 

45 123 137 373 13 259 361 729 65305 14393 
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(5. m. n) -- If m ^ 4,   there are many solutions in small integers.     (5. 4. 4). 

5 5 r      i is (5, 6, 6, 8)    = (4, 7, 7, 7)    due to Subba Rao I 23J.    Several parametric 

solutions to (5. 4. 4) were found by Xeroudakes and Moessner [24],    The 
5 

first triple coincidence of four fifth powers is 1479oü4544 = (3,48,52,61)    = 

(13. 36, 51. 64)5 = (18. 36.44.66)5. 

In the subsequent discussion we adopt a notation borrowed from the field of 
r 

partitions,  writing x    to signify the term x repeated r times in the expression 

in which it appears.    Table X uses this notation, giving (k. m. n). where 

known and referencing solutions in other tables.    Table X also shows for 

certain (k. m. n) the range which has been searched on the computer 

exhaustively. 

For the remainder of the equations (k. m. n) which arc discussed,we note 

in the text only the limits searched,   interesting features,  and methods 

employed, specific solutions are given in Table X. 

E.    SIXTH POWERS 

(6. 1. n) -- No solution is known for r ^ 6.     We consider the cases of r. = 6, 

6       ä     6 7,   and 8 in  lescanding crdrr. To solve (6. 1. 8),  x    =   L   y. ,  note thaf 

u    3 0 or 1  (mod 9) according to whether u = 0 or u ^ 0 (mod 3).    Then if x = 0 

(mod .3).   all y.  H 0 (mod 3) and the solution is not primitive.     Therefore, 

take x and exact)/ one of the y   (say y, ) prime to 3.     Then (x    - y. )/3     = 
8 6 
E   (v./))    is an integer (which is true if and only if yi   = * x (mod 24?)J to 

be decomposed by trial as the sum of 7 sixth powers.    In Table XI,   we 
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(k. m. n) 
Range 

Searched 

Table X 

(k. m. n). and Summary of Results 

Solutions Known* 

4. 1.3 

4. 1.4 

4. 1. 5 

4.2.2 

4.2. 3 

4. 3. 3 

5. 1. 3 

5. 1.4 

5. 1. 5 

5. 1.6 

5. 1.7 

5.2.2 

5. 2. 3 

5. 2. 4 

5.2. 5 

5. 3. 3 

2. 34 x 10 

4. 1 x 1015 

21 

5. 3 x 10 16 

2. 6 x 10 

2.6 x 10 

7. 7 x 10 

14 

14 

13 

2. 8 x 10 

.12 

14 

8 x 10 

2x10 

2x10 

8x10 

10 

8 

12 

None known 

(353)4 = (30. 120,272, 315)4 

See Table IV,  23 solutions 

4 2 2 4 
(5)* = (2^, 3,4V 

(59. 158)4 = (133, 134)4 

See Table I in [18],  and Table V,  46 solutions 

2 4 4 
(7^r = (3,5.8r 

4 2 4 
(2,4.7)* - (3.6V 

None known 

(144/5 = (27,84. HO, 133)5 

(72)5 - (19,43,46, 47.67)5 

See Table VI,   12 solutions 

(12)5 = (4.5,6,7,9, ll)5 

(23)5 - (1,7.8, 14, 15, 18.20)5 

None known 

None known 

(3.29)5 - (4. 10,20.28)5 

See Table VII.   10 solutions 

(1,22)5 -- (4. 5.7. 16, 21)5 

See Table VIII,   6 solutions 

(24.28,67)5 = (3, 54,62)5 

See T.thle IX,   45 solutions 

All solutions shown at unless otherwise marked. 
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Table X (Continued) 

(k.  m.  n). and Summary of Results 

Range 
(k. m. n) Searched Solutions Known 

5.3.4 (3.22,25)5 = (1, 8, 14(27)5 

5.4.4 (5.62.8)5 - (4.73)5 

b.l.n 3.16x10               None known for n ^ 6 

6.1.7 1.3xl019 (1141)6 =  (74,234.402,474.702,894, 1077)6 

6.1.8 5.8xl016 (25r;6 = (8. 12. 30,78, 102, 138, 165,246)6 

See Table XI,   14 solutions 

6. 1.9 (54)6 - (1, 17, 19,22,31,372.41.49)6 

6. 1. 10 (39)6 = (2, 4,7. 14, 16, 262. 30, 322)6 

6. 1. 11 (18)6 = (2, 53,72,92,10, 14. 17)6 

6. 2. n 4x10                      None known for n s 6 

6.2.7 '56, 91)6 = (18,22. 36, 58.69. 782)6 

6.2.8 (35, 37)6 = (8. 10. 12. 15,24, 30, 33, 36)fa 

6.2. 9 (6   21)6 - (1, 52.7. 133. 17. 19)6 

6.2. 10 (122)6 = (I3.42.7.9,ll3)6 

6.3.3 2. 5 x 1014 (3, 19,22)6 = (10, 15,23)6 

See Table XII,   10 solutions 

6.3.4 2.9xl012 (41, 58, 73)6 -  (15,32,65,70)6 

See Table XIII,   5 solutions 

6.4.4 (22.92)6 - (3,5,6, 10)6 

14 7. 1. n 1. 95 x  10               None known for n ^ 7 

7. 1.8 (i02)7 = (12. 35. 53. 58.64. 83.85, 90)7 

7. 1. 9 (62)7 - (6, 14.20,22,27. 33.41, 50, 59)7 

7.2. 8 (10, 3 3 )7= (5.6,7, 152. 20. 28, 3 I)7 

7.3.7 (26, 302)7  =  (72. 12, 16,27,28. 31)7 

7.4.5 (12. 16   4i. 50)7 = (3, 1 1 , 26. 29, 52)7 
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Table X (Continued) 

(k. m. n). and Summary of Result« 

Range 
(k. m. n)        Searched Solutions Known  

7. 5. 5 (82, 13. 16. 19)7 = (2, 12. 15. 17. 18)7 

See Table XIV,   17 solutions 

7.6.6 (2,3.62.10.13)7 = {12.72.122)7 

8. 1. 11 (125)8 = (14, 18. 442. 66. 70, 92. 93. 96. 106. 112)8 

8. 1. 12 (65)8 = (82.10.243.26.30.34.44, 52.63)8 

8.2.9 (11,27)8 = (2.7.8.16.17.202.242)8 

8. 3. 8 (8. 17. 50)8 = (6, 12. 162. 382. 40. 47)8 

8.4.7 (6. 11.20.35)8 = (7, 9. 16, 222, 28. 34)8 

8. 5. 5                                              (1. 10, 11,20,43)8 = (5, 28, 32. 35, 41 )8 

8.6.6 (3.6.8, 10,15. 23)8 = (5, 92. 12. 20. 22)8 

8.7.7 (1.3,5.62.8. 13)8 = (4,7,92,10. 11, 12)8 

8.8.8 (1.3.73. 102. 12)8 = (4.52.62.113)8 

32- 
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Table X (Concluded) 

(k.  m.  n)1 and Summary of Results 

Range 
(k. m. n) Searched Solutions Known 

9.1.15 (26)9 = (Z2.  4>6
2

>7.92.10.151I8,212.232)9 

9. 2. 12 (15.21)9 = (24.32
I4.7>16. 17. 192)9 

?. 3. 11 (13. 16. 30)9 = (2,3,6,7.92,192,2i.25.29)9 

). 4. 10 (5, 12. 16.21)9 = (2.62.9. 10, 11. 14, 18, 192)9 

9. 5. 11 (7.8, 14,20,22)9 = (3, 52. 92. 12. 152, 16. 212)9 

9. 6. 6 (1, 132, 14. 18,23)9 = (5.9, 10, 15.21.22)9 

10. 1.23 (15)10 = (15.2,3,6,76,94, 10. 122. 13. 14)10 

10.2. 19 (9,17)10 = (25,5,6.10,116,122, 153)10 

10. 3. 24 (11, I52)10 = (1.2,3,410.7,87, 10, 1Z. 16)10 

10.4.23 (113;16)10 = (15,22.32,4,64.73,8, 102, 142, 15)10 

10. 5. 16 (32,8, 14. 16)10 = (14.2.42,6,122. 135.15)10 

10.6.27 (22.8,11   122)10 = (1.34,42, 52,67,79
P10,13)10 

10.7.7::: (1,28.31, 32, 55,61,68)10 = (17, 20, 23, 44. 49. 64, 67)1 0 

Moe ssne r [ 291; not known to be (10.7.7), 
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Table XI 

Primitive Solutions of (6. 1. 8) for z s 7 x 10 16 

z = Xj  = I   y. 

i xl Vl ^2 ^3 ^4 ^5 ^6 ^7 ^8 

1 251 8 12 30 78 102 138 165 246 

2 431 48 111 156 186 188 228 210 426 

3 440 93 93 195 197 303 303 303 411 

4 440 219 255 261 267 289 351 351 351 

5 455 12 66 138 174 212 288 306 441 

6 493 12 48 222 236 333 384 190 426 

7 499 66 78 144 228 256 288 435 444 

8 502 16 24 60 156 204 276 330 492 

9 547 61 96 156 228 276 318 354 534 

10 559 170 177 276 312 312 408 450 498 

11 581 60 102 126 261 270 338 354 570 

12 583 57 146 150 360 390 402 444 528 

13 • 607 33 72 122 192 204 390 534 534 

14 623 12 90 114 114 273 306 492 592 
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give the 14 smallest primitives found by this method; (6. 1.8).  is (251)    = 

(8, 12,30,78. 102, 138, 165,246)6. 

For (6. 1. 7), x    = L   y. ,  note that u    ■ 0 or 1 (mod 8) according as u is 

even or odd.    Then for a primitive solution, x and exactly one of the y. 

are odd.    The argument for (6. 1. 8) modulo 9 applies and x is prime to 6, 

y.   (say) is prime to 3,   and either y.   is odd or another y (say y^)    is odd. 

In the first case yl m ± x (mod 243) and (mod 32),and (x6 - yj)/66 = E   (yi/6)( 

is an integer to be decomposed by trial as the sum of 6 sixth powers.    In 

the second case y.  s ± x (mod 243),  y_ « ± x (mod 32) and (x    - y,   - y7)/6    = 

£   (y./6)    must be an integer (certain combinations x,   y. ,  y, satisfying 

the congruences are rejected),which is decomposed by trial as the sum 

of 5 sixth powers.     The only solution forx s 1536 is (6. 1.7).,   (1141)    = 

(74, 234, 402, 474, 702, 894, 1077) .which is obtained in the second case. 

6 6 6 
For (6. 1. 6),  x    = r   y.   note that u    « 0 or 1 (mod 7) according as u = 0 

or u f 0 (mod 7),    Then for a primitive solution,  x and exactly one of 

2 
the y. (say y,) are prime to 7.    This implies y.  s ± x,   ± qx or ± q x where 

q = 34968 is a primitive sixth root of unity (mod 7     =  117649),    Now the 

foregoing arguments modulo 8 and modulo 9 apply,   and there are five cases. 

(1) If y.  B ± 1 (mod 6), then y.   ■ ± x (mod 243) and (mod 32) and 

(x    - y.)/42    = E  (y./42)     is an integer to be decomposed by 

trial as the sum of 5 sixth powers. 

(2) If yi  « ± 2 (mod 6), then y.   ■ ± x (mod 243) and another of the y, 

(say y,)    is odd.    Then y2  s 0 (mod 3- 7),  y- ■ i x (mod 32), 

.6 and (x    - yi  - y2)/42    = E   (y./42)" is the sum of 4 integral 

sixth powers. 
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(3) If Yi =3 (mod 6), then y. = ± x (mod 32) and another of the y. (say y?) 

is prime to 3, y_ = 0 (mod 2' 7), and y- » ± x (mod 243). In case (2), 

(x    - yi   - y7)/42    is an integer and is the sum of 4 sixth powers. 

(4) If yi   "0 (mod 6),   another of the y. (say y^)    is prime to 3,  y- « 0 

(mod 7),and y? = ± x (mod 243).    If y-, is odd,   then y2 s ± x (mod 32), 

and as in cases (2) and (3) (x    - Yi  - y?)/42    is the sum of 4 sixth 

powers.    If y^ is even,   we have case (5). 

(5) Another of the y. (say y,)    is odd,  y.  » 0 (mod 3- 7),   y,  = ± x (mod 32), 

and (x    - y.   - y? - y   )/42    =   T  (y./42)    is an integer to be decomposed 

as the  sum of 3 sixth powers. 

The search for a solution to (6. l.fc; was carried exhaustively by this 

method through the range x s 383 14, and there is no solution in this range. 

A. Martin [25] gave a solution »o (6. !. 16); Moessner [26] gave solutions 

to (6. 1. n) for n = 16, 18, 20 and 22. For n ^ i 1, it is not difficult to find 

solutions  in small integers. 

(6. 3. n) - - Subba Rao [ 23] found the solution (3, 19, 22)6 = (10, 15. 23)fc, which 

is  (6. 3. 3K.     In Table XII we give the remaining 9 primitive solutions which 

14 exist in the  ringe up to 2. 5 x 10     .    It is interesting to note thit each of the 

solutions except thf:  sixth is also a solution to (2. 3. 3i.    Table  XIII gives the 

12 five primitive solutions to (6. J. 4) which exist in the  range up to 2. 9 x 10 

(6. m. n) -- If m is ^ 4,   solutions in small integers can be found readily. 

Subba Rao [23] gave  f6. 4. 4),   'see   Table X.     The first triple coincidence 

of four sixth powers  is  1885800643779 -  (1 , 34, 49. 1 1 1 )6 =  (7. 43   69. 1 10)6 

(18,25,77, 109)6. 
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Table XU. 

Primitive Solutions of (6. 3. 3) for z ^ 2. 5 x 10 14 

z = E   x.   = Z.   y. 
1     J       1     J 

i xl x2 x3 yl y2 y3 z 

1* 3 19 22 10 15 23 1604 26514 

2 36 37 67 15 52 65 9 52008 90914 

3 33 47 74 23 54 73 17 62771 73474 

4 32 43 81 3 55 80 28 98246 41354 

5 37 50 81 11 65 78 30 06202 62890 

6 25 62 138 82 92 135 696 38068 13393 

7 51 113 136 40 125 129 842 70669 28346 

8 71 92 147 1 132 133 1082 47536 54794 

9 111 121 230 26 169 225 15304 47319 28882 

10 75 142 245 14 163 243 22464 65092 02194 

The first solution is due to K.   Subba Rao [23]. 
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Table XIII 

Primitive Solutions of (6. 3. 4) for z * 2.9 x 10 

3      6      4      6 
z = L   x.   = 2.    y. 

1      J       1      J 

12 

i Xl x2 x3 yi vz ^3 ^4 z 

1 41 58 73 15 32 65 70 19 41530 23074 

2 61 62 85 52 56 69 83 48 54701 25570 

3 61 74 85 26 56 71 87 59 28763 80162 

4 11 88 90 21 74 78 92 99 58468 58345 

5 26 83 95 23 24 28 101 106 23411 79770 
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F, SEVENTH POWERS 

(7.2. 10)2 is (2,27)7 = (4.8,13I142,16,18,22.232)7 = (72. 9. 13, 14, 18, 20, 222. 23)7 

which is a double primitive and reduces to the solution (7. 5. 5)_. 

(7. 5. n) -- Table XIV lists the 17 primitive solutions to (7. 5. 5) which exist 

in the range up to 4. 0 x 10 

G. EIGHTH POWERS 

8k + 4 8 (8. l.n) -- We found a parametric solution to (8. 1. 17),  (2 + 1)    = 

(28k + 4 _ ^8 + ^k + Y + ^k+1,8 + 7 ^Sk^S + (23k + 2)8] which {Qr 

k = 0 yields (8. 1. 17)..    This was the solution used by Sastry [2l] in 

developing a parametric solution to (8. 8. 8).     The computer program used 
Q 

in searching for solutions to (8. l.n) was based on the congruences x  = 0 or 1 

(mod 32) according to whether x= 0 or 1 (mod 2),   so that primitive solutions 
n 
I 
1 

a      n     g 8        8 
to x    = E   y.  with n < 32 must have x and (say) y. both odd.    Then x    - y. 

I     J 
8 8       8 

is divisible by 2 , which implies x ■ ± y.   (mod 32),   and (x    - y. )/25b is 

decomposed as the sum of n -  1 eighth powers by trial. 

Solutions to (8. 5. 5) and (8. 9. 9) were found by A.   Letac  [27]. 

H.    NINTH AND TENTH POWERS 

Computations performed by the authors for (9. m. n) and (10. m. n) are the 

basis for the data shown in the last two columns of Table XV,   except for 

a solution to (10. 7. 7) given by A.   Moessner [ 29j.    Due to computer word 

length limitations the calculations were not extended to large values of the 

arguments. 
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Table XIV 

Primitive Solutions of (7. 5. 5) for z s 4. 0 x 10 12 

= 4.  x.  = Z.   y. 
1     J       1     J 

i xl x2 X3 X4 X5 yl y2 ^3 ^4 ^5 
z        | 

1 8 8 13 16 19 2 12 15 17 18 12292 50016  j 

2 4 8 14 16 23 7 7 9 20 22 37807 87943 

3 11 12 18 21 26 9 10 22 23 24 1 05004 37728 

4 6 12 20 22 27 10 13 13 25 26 1 42708 22835 

5 3 13 17 24 38 14 26 32 32 33 11 94751 43393 

6 4 5 30 36 44 2 8 27 39 43 41 95120 68269 

7 16 33 33 33 44 18 26 34 38 43 44 74015 74051  I 

8 3 4 21 39 45 14 23 33 41 43 51 27015 66916 

9 16 17 26 33 49 10 12 30 43 46 72 95521 00131 

10 15 18 18 43 48 8 11 32 44 47 86 02822 52818 

11 19 24 43 46 51 9 36 40 48 50 161 05272 89337 

12 13 16 35 35 56 9 19 28 44 55 185 61046 27259  | 

13 9 11 43 45 55 3 19 37 51 53 216 79475 68747 

14 9 lc- 19 34 59 5 10 16 48 57 254 22443 49046 

15 23 27 40 49 56 7 39 45 51 53 258 30231 01035  | 

16 8 13 41 45 59 2 10 47 52 55 305 71400 57494  1 

17 1 38 39 39 60 8 25 34 53 57 318 82375 95951  ! 
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Table XV 

Least n for Which a Solution to (k. m, n) Is Known 

10 

1 2 3 4 4 7 8 11 15 23 

2 2 2 2 4 7 8 9 12 19 

3 3 3 7 8 11 24 

4 5 7 10 23 

5 5 5 11 16 

f 6 27 

- 7 
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I.    CONCLUDING REMARKS 

Let N (k, m) be the smallest n for which (k. m. n) is solvable.    In Table XV 

we show the upper bound to N based on the  results just presented.    Each 

column is terminated when a solution to (k. m. m) has been found.    It appears 

likely that whenever (k. m. m) is solvable,   so is (k. r. r) for any r > m. 

Some questions are: 

a. Is N (k, m + 1) ^ N (k, m) i N (k + 1, m) always true ? 

b. Is (k. m« n) always solvable when m + n > k? 

c. Is it true that (k. m. n) is never solvable when m + n < k? 

d. For which k,m,n, such that m + n = k,is (k. m. n) solvable? 

The results presented in this section tend to support an affirmative answer 

to (c).    Question (d) appears to be especially difficult.    The only sn:vable 

cases with m + n = k known at present are (4. 2. 2),  (5. 1. 4))and (6. 3. 3). 

In this section we have made a computational attack on the problem of finding 

a sum of n k     powers which is also the sum of a smaller number of k 

powers.    In many of the cases considered,   especially for the larger values 

of k, we have undoubtedly not obtained the best possible results,  but the 

amount of computing needed to do this would seem to be overwhelming. 

We believe that the main result of this section is the presentation of results 

on a family of Diophantine equations which have largely been considered 

separately in the past.    We hope that this presentation offers greater insight 

into the nature of the function N (k, m) and that the future efforts will be 

directed toward reducing the upper bounds for this function. 
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VI.    DIFFERENCES OF POWERS 

A.        INTRODUCTION 

In this document we use the word power to denote a number of the form x 

where x and m are positive integers and m > 1.    We consider which positive 

integers z can be expressed as the difference of two powers;  that is, 

z = xm - yn.   z >0. (1) 

We have employed the CDC 6600 computer to find all solutions to (1) in 

which z s 1000 and y" < xm s 1024. 

A direct method can be used to solve (1) for z ^ D and y   < x     ^ L.   For 

x > 1, consider the n     powers nearest to x    .    If u is the greatest integer 

in x        ,  these are u   ,   (u ± 1)  ,  (u ± 2)  ,   . , . , .    If h ^ 0 and z = x   ' - 

(u - h)    ^ D,  we obtain a solution.    If x     - 1 s D,   then each h with 

O^h^x-lisan acceptable value.    Similarly,   for z = (u + h)    - x      ä D, 

h 4 0i  we obtain a solution.     By examining the successive values h = 0,   1, 

2,   . . . ,  we obtain all solutions in which the power x     appears; a simple 

test indicates where to terminate each sequence.     If n = m,   it is only 

necessary to consider z = x      - (x - h)     for h =  1,   2,   3 as long as 

z ^ D,  or until h = x - 1.    In this case an upper limit to x is the least 

integer X such that (X + 1)      - X     > D.    Since for m = pq and n = rs, 

x      - y    = (x  )" - (y   )   ,   if the foregoing procedure is carried out for all 

values of x with x      s L,   then only prime exponents m and n,  with n ^ m, 

24 need be examined.    For L = 10      and D = 1000, it is necessary to consider 

500 squares (since 5012 - 5002 > 1000),   1024/3 = 108 cubes,  63095 = 

[lO ] fifth powers,   and so forth.    The largest exponent m tried was 

■7Q      u 980  ^  in24 
79,  because 2      > 10     . 
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3       2 Since the number of cubes to be examined in solving z = ± (x    - y  ) is so 

large, a special method was employed.    (This was desirable especially 

3 2 since the larger values of x    and y    are integers of up to 24 digits,   necessi- 

tating the use of double precision arithmetic. )   If x is large compared to D, 

3/2 3/2 then x        must be very nearly an integer.    For,   setting x     " = y + a where 

y is an integer and  |a| < 1,  we have 

DHX
3
 - y2|  =   |(y + a)2 - y2 | =  |a(2y +a)| > |al (2y - 1), 

so that |a| < —-—   < ——B .    If x > 90, 000 and D = 1000,   |a| < 2 x 10'5. 
2y -  1 2x3/2 .3 

3/2 We can therefore require that the fractional part of x   .     be very close to 

0 or 1  before proceeding to compute the difference between x    and the squares 

nearest to x  . 

Now let x " t    + u where t,   u are integers,   t > 0 and 1 ^ u ^ 2t.    Then 

3/2       3  .,   ,   u ,3/2       3 1 3tu    L 3u2         u3            3u4            3u5      , x        = t    (1  + -3-) = t    4 — + — _ +  4   . . .   . 
td Z 8t 16t3        128t5       256t7 

If X(tI u) = 0 when tu is ever, and = 1/2 when tu is odd,   the fractional part of 

x is the same as the fractional part of f{t, u) = X(t, u) + —— -      with 
.   4 ,4 ^ 8t 16t3 

an error not exceeding -^  ^ -i-  1^— =  ^-.    If x > 90, 000,   then t > 300 
128t5        128     t5 8t 

and this error is < 0. 00125.    The direct method was used for x ^ 90, 000 
Q 

and, for 90, 000 < x ^ 10 , each x was rejected unless the fractional part of 

f(tI u) fell either in the range (0, 0. 0013) or (0. 9987, 1), in which case the 

direct method was applied to x. 

3/2 The power series expansion for x       ,   (2),   leads to the following sets of 

3        2 polynomials x, y, z such that z = x    - y    is (relatively) small. 
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*2 ^ ^ A   3tu 3     2   2,3, x = t    +u,  y = t    + —— ,   z =  —   t u     + u  , where tu is even; (3) 

2 2 t  = 6p   Id where d divides 6p 

u = 4p (4) 

x = t    - u,  y = t    -—  tu + d,   z = 8p    -d. 

3        2 For example,   (3) gives for u=l,t = 2,  x=5,   y=ll,z=x    -y    =4, 

and (4) gives for d = 1,  p = 5, x = 22480,   y = 3370501,  z = x3 - y2 = 999. 

B.       RESULTS 

There are 2895 solutions to (1) with 1 * z s 1000 and yn < xm ^ 1024.    Of 

these,  274 solutions have z ^ 100 and these are given in Table XVI.    Some 

characteristics of the larger set of solutions are given in the following 

discussion. 

Let G(t) denote the number of solutions to (1) for 0 < z ^ t.    S.   Pillai 

conjectured [l ] that G(t) is finite for all t > 0.    We give in Table XVII a 

tabulation of F(t),  a low-ir bound to G(t),   obtained by counting the solutions 

for which x      ^ 10     .    F(t) is approximately linear in the interval 

0 < t s 1000.  and for 100 s t s 1000 and we have 2. 7 < F(t)/t < 2. 9. 

To suggest that G(t) is indeed finite and is closely approximated by F(t) 

we give in Table XVIII the number of solutions to (1) with z s 1000 in which 

x     has k digits,   for k = 1,  2,   3,   . . . ,   18.     (There are no solutions with 

19 s k s 24. )   It seems likely that the total number of solutions for z ^ 1000 

in which x      exceeds 10       is a small integer or zero. 
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Table XVI 

Solutions of z = xm - yn for 0 <  z ^ 1000,  y11 < xm * 1024 

10 

m        n x      - y 

32.23 

33-52 

27.53 

23.22 

62.25 

11' 

2        ' 
3^ - 2 ' 

25-33 

none 

24-32 

25-52 

2   - ir 

215-1812 

3    - 1 

24-2 

2 
312^ - 

3 

46" 

52-24 

62-33 

152-63 

2 3 
253    - ^ 

3        7 
13J - 3 

27  - 25 

4 -  1 

128 -  125 

8 - 4 

36 - 32 

125 -  121 

9 - 4 

32  - 27 

8 -   1 

16 - 9 

32 - 25 

128 - 121 

32768 - 32761 

9 -  1 

16 - 8 

97344 - 97336 

25 -  16 

36 - 27 

225 - 216 

64009 - 64000 

2197 - 2187 

11 

12 

13 

14 

15 

16 

17 

m       n 
x     - y 

33-24 

62-52 

562 -  55 

3 2 
15^ - 58 

24     22 

47 13" 

17" 70 

none 

24-l 

26-72 

138 109" 

52-32 

25-24 

122 - 27 

52.23 

72-25 

34-26 

232 - 29 

2    3 
282 - 43 

375 52" 

27 - 16 

36 - 25 

3136 - 3125 

3375 - 3364 

16 - 4 

2209 - 2197 

49 - 36 

256 - 243 

4913 - 4900 

16 - 1 

64 - 49 

1295044 
-1295029 

25 - 9 

32 -  16 

144 -   128 

378661' .234- 

25 -  8 

49 -  32 

81  - 64 

529 -  512 

79524 - 79507 

140625 -  140608 

143384152921 
-143384152904 | 
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Table XVI 
Solutions of z = x     - y    for 0 c z <1000. yn<xm 5 10^ (Continued) 

1   z I                                 m       n x     - y z X 
m       n                           ( 

- y                    | 

18 33 - 32 27-9 26 33.1 27-1                         1 

35 - 152 243 - 225 353 - 2072 |    42875 - 42849         1 

192 - 73 361 - 343 5372 - 235 6436369 
-6436343              ! 

19 33 - 23 

102 - 34 

27-8 

100 - 81 
27 62 - 32 

142-132 

36-9                       | 

196 - 169 
122 - 53 

73 - 182 

144 - 125 

3*3 - 324 
35 - 63 243 - 216 

28 25 - 22 32-4                         | 
SS3 - 22434* 503284375 

-503284356 62 - 23 

26.62 

36-8 

64-36                      ! 20 62-24 36 - 16 

63 - 142 216 - 196 27 - 102 

29 - 222 

128 - 100                  | 

512 - 484 21 5
2.22 25 - 4 

n2-io2 121 - 100 373 -  154 

217 - 3622 

50653 - 50625        | 

131072 - 131044    | 22 72.33 

472 . 37 

49 - 27 

2209 - 2187 29 152 - 142 225 - 196                J 

23 33-22 

25-32 

27 - 4 

32 - 9 

30 832 - 193 
f 

6889 - 6859 

31 25-l 32-1 

122.n2 

211.45
2 

144 - 121 

2048 - 2025 

28-15
2 256 - 225 

32 62.22 

26-25 

36-4                        | 

64 - 32                      j 24 S2-. 25 - 1 

25-23 32 - 8 34-72 81-49 

72-5
2 

210.103 

49 - 25 

1024 - 1000 

65 - 882 7776 - 7744              j 

33 72-24 49-16 

7368442.81583 542939080336 
-542939080312 

n2 - 28 
289 - 256                  I 

34 none 
53 -  102 25 125 - 100 

132 -  U2 169 - 144                  I 
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Solutions of 

Table XVI 

z = x     - y   for 0 < z < 1000, yn <xm < iO24 (Continued) 

m       n x     - y m      n x     - y 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

62.1 

182 - 172 

ll3-64 

102 - 26 

422 - 123 

26.33 

192 - 182 

7882 - 315 

372 - ll3 

26.52 

20' 19 

3 2 
10    - 3r 

3 2 
22    - 103 

72.32 

112.34 

28.63 

143 - 522 

72.23 

132.27 

2 2 
21^ - 20^ 

none 

222 - 212 

53-34 

12 

I32-5 

10 

3 

36 - 1 

324 - 289 

i331 - 1296 

100 - 64 

1764 - 1728 

64 - 27 

361 - 324 

14348944 
-14348907 

1369 - 1331 

64 - 25 

400 - 361 

1000 - 961 

10648 - 10609 

49 - 9 

121 - 81 

256 - 216 

2744 - 2704 

49 - 8 

169 - 128 

441 - 400 

484 - 441 

125 - 81 

144 - 100 

169 - 125 

45 

46 

47 

48 

49 

50 

51 

52 

53 

23 - 22 

21 96' 

17' 

13 

14 

24 23 

12 - 41' 

63' 500 

13 11' 

28 - 148 

5 - 24 

65 - 524 

none 

102 - 72 

262 - 54 

14' 12 

36 - 262 

293 - 1562 

49 - 4 

81 - 36 

529 - 484 

9261 - 9216 

289 - 243 

128 - 81 

216 - 169 

243 - 196 

576 - 529 

1728 - 1681 

250047 - 250000 

49 - 1 

64 - 16 

169 - 121 

21952 - 21904 

81 - 32 

625 - 576 

274625 - 274576 

100 - 49 

676 - 625 

196 - 144 

729 - 676 

24389 - 24336 

•52- 



—— PHggpHT 

Table XVI 

Solutions of a = xm - y11 for 0 < z < 1000, yn < xm < 1024 (Continued) 

z IT 
X 

t       n 
- y 

54 34-33 81 - 27 

73 - 172 343 - 289 

55 2
6.32 64 - 9 

28
2 - 36 784 - 729 

563 - 4192 175616 - 175561 

56 26.2
3 64 - 8 

34.5? 81 - 25 

I5
2 - 132 225 - 169 

183 - 762 5832 - 5776 

57 U2-26 121 . 64 

202 - 73 400 - 343 

292 - 282 841 - 784 

58 none 

59 302 - 292 900 - 841 

60 26.22 64 - 4 

28 - 142 256 - 196 

1363 - 15862 2515456 
-2515396 

765 - 503542 2535525376 
-2535525316 

61 5
3.26 125 - 64 

312 - 302 961 - 900 

62 none 

63 26-l 64 - 1 

122 - 34 144 - 81 

210-312 1024 - 961 

5683 - 135372 183250432 
-183250369 

m       n x     - y 

64 

65 

66 

67 

68 

69 

70 

71 

102 - 62 

27.26 

172 - 152 

242 - 29 

34.24 

332 - 210 

532 - 143 

14113' 584" 

none 

342 - 332 

3 2 
23    - 110 

102 - 25 

142 - 27 

182 - 28 

462.211 

2 3 
874^ - 152J 

2 2 
13^ -  10^ 

2 2 
35^ - 34^ 

none 

142 - 53 

29-212 

64 - 352 

37 - 462 

100 - 36 

128 - 64 

289 - 225 

576 - 512 

81 - 16 

1089 - 1024 

2809 - 2744 

199176769 
-199176704 

1156 - 1089 

12167 - 12100 

100 - 32 

196 - 128 

324 - 256 

2116 - 2048 

3511876 
-3511808 

169 - 100 

1225 - 1156 

196 - 125 

512 - 441 

1296 - 1225 

2187 - 2116 
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Table XVI 

Solutions of a = x"1 - y11 for 0< « < 1000,  yn < xm < 10     (Continued) 

i    z 
m       n x      - y z m       h 

X      - y 

72 34.32 81  - 9 80 34.1 81-1 

112.72 121 - 49 I22 - 26 144-64 

63 - 122 216 - 144 212 - 192 441 - 361 

192 - 172 361 - 289 2922 - 443 85264 - 85184 

73 34.23 81 - 8 81 152 - 122 225 -  144 

102 - 33 100 - 27 182 - 35 324 - 243 

172 - 63 289 - 216 412 - 402 1681  - 1600 

372 - 64 

6112 - 723 

7172 - 3563 

1369 - 1296 

373321  - 373248 

45118089 
-45118016 

133 - 462 2197-2116          \ 

82 none 

83 422 . 412 

39 -  1402 

1764 - 1681 | 

19683 - 19600     \ 
74 35 - 132 243 -  169 

84 iO2 . 24 100 - 16                 j 
99   - 985 970299 - 970225 

222 - 202 484 - 400               j 
75 102 - S2 100 - 25 

85 ll2 - 62 121 - 36 
i42 - n2 

382 - 372 

196 - 121 

1444 - 1369 
432 - 422 1849 - 1764          | 

86 none 
76 5

3.72 

Z0Z . 18
2 

125 - 49 
87 28 - 132 256 - 169              j 

400 - 324 
73.28 343 - 256 

ior - IOIS^ 1030301 
-1030225 442 - 432 1936 - 1849 

77 ^.z2 
81  - 4 88 132 - 34 169 - 81 

392 - 382 1521  - 1444 63-27 

232 - 212 

216 - 128 j 

529 - 441               j 78 none 

79 27.72 128 - 49 

402 - 392 1600 - 1521 1 

203 - 892 8000 - 7921 

3022 - 453 91204 - 91125 

54. 
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Table XVI 

Solutions of z = xm - y11 for 0 < z < 1000, n ^     m < < A24 y   < x     ^10 (Concluded) 

z 
m       n 

x     - y z 
m       h x     - y 

89 112.25 121  - 32 96 102 - 22 100 . 4 

53-62 125 - 36 U2 - 52 121 - 25 

33^ - 103 1089 - 1000 27-25 128 - 32 

452 - 442 2025 - 1936 142 - 102 196 - 100 

912-213 

4082 - 553 

8281 - 8192 

166464 - 166375 

f,4 - 232 625 - 529 

97 152 - 27 

74 - 482 

772 - 183 

225 ■ 128 

2401  - 2304 

5929 - 5832 

90 none 

91 102 - 32 

63.5
3 

100 - 9 

216 - 125 98 5
3.33 125 - 27 

462 - 452 2116 - 2025 212 - 73 441 - 343 

92 I0
2 - 23 100 - 8 99 I02-1 100 ■ 1 

27.62 128 - 36 35 - 122 243 - 144 

242 - 222 576 - 484 182 - 152 324 - 225 

213 - 902 8192 - 8100 502 - 74 2500 - 2401 

93 53-25 125 - 32 100 5
3.5

2 125 - 25 

172 - U2 289 - 196 152 - S3 225 -  125 

472 - 462 2209 - 2116 73-35 343 - 243 

1302 - 75 16900 - 16807 262 - 242 

103 - 302 

676 - 576 

1000 - 900 94 U2.33 121 - 27 

4212.3U 177241  - 177147 S5 - »Z 

902 - 203 

3125 - 3025 

810Ü - 8000 95 122 - 72 144 - 49 

63-n2 
216 - 121 US2 - 243 13924 - 13824 

4e2 - 472 2304 - 2209 343 -  1982 39304 - 39234 

67 - 5292 279936 - 279841 I371902.26603 18821096100 
-18821096000 
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Table XVII 

F(t),  the Number of Solutions to z = x     - y   for 0 < z ^ t 

in Which yn<xm ^ 1024 

t 100 200 300 400 500 600 700 800 900 1000 

F(t) 274 564 855 1136 1413 1710 1991 2287 2598 2895 

F(t)/t 2.740 2.820 2.850 2.840 2.826 2.850 2.844 2.859 2.887 2.895 
1 

Table XVIII 

Number of Solutions,  N{k),  with k Digits 

k !    i 2 3 4 5 6 7 8 9 

N(k) ! !  6 72 742 963 605 296 72 47 33 

k 1  10 11 12 13 14 15 16 17 18 

N{k) I 20 16 8 4 3 3 1 2 2 

Table XIX 

Number of Values R(k) of z for Which There Are k Solutions 

k 0 1 2 3 4 5 6 7 8 9 10 11 12 13 | 

R(k) | | 138 124 223 173 158 69 55 25 16 5 8 3 1 2 | 

56- 
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For each z ^ 1000 there are at most 13 solutions in the range considered. 

We give in Table XDC the number of values of z for which there are k solu- 

tions,  0 s lc s 13,    The two values of z s 1000 with the maximum number 

of representations as the difference of two powers are 

225 = 172 . 26 = 54 - 202 = 392 - 64 = 1132 - 1122 = 212 - 63 

= 352 - 103 = 602 - 153 = 1652 - 303 = 4652 - 603 = 24152 

= 61592 - 3363 = 65762 - 3513 = 6110853632 - 7201143; 

ISO" 

and 

775 = 282 - 32 = 302 - 53 = 103 - 152 = 802 - 752 = 193 - 782 = 203 - 852 

= 2642 - 413 ID5 - 3152 = 3882 - 3872 = 703 - 5852 = 803 - 7152 

= 167503 - 21678152 = 265303 - 43212152. 

The 138 values of z for which (1) has no solutions (in the range covered) are 

given in Table XX.    All these are of the form 4k + 2,   since any other positive 

2       3 3        2 integer is the difference of two squares (except 1 = 3    - 2    and 4 = 2    - 2   ). 

In Table XXI we give the solution to (1) in largest integers,  over the range 

considered, for each pair of prime values m,n.    Where there is no entry 

for a given pair m,n,  all positive differences x      - y    exceed 1000.    If 

the upper limit on z is increased to 10,000,  the only additional solutions 

in largest integers obtained in which either m or n exceeds 19 are 

9796 = 28982 - 223.   1792 = 223 - 28962 and 4633 = 463412 - 231.    (Note: 

2        23 z = 4002 = 2897    - 2      is not in largest integers x, y for a particular 

pair m, n. ) 

3        2 The equation ± z = x    - y    was studied on a computer by M,   Lai,  M.   Jones 

and W.  Blundon [2],. who reported 8593 solutions in the range  jzj < 10 

and x < 4.64 x 10  .    Since negativ«? values for x were allowed,  the results 
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Table XX 

Values of z for Which z = x"1 - y11 Has No Solution,  x111 < 1024 

i     t Number 
Range of Values z 

1 - 100 13 6 14 34 42 50 58 62 66 70 78 82 86 90 

101 - 200 8 102 110 114 130 134 158 178 182 

201 - 300 13 202 206 210 226 230 238 246 254 258 266 274 278 290 

301 - 400 13 302 306 310 314 322 326 330 358 374 378 390 394 398 

401 - 500 20 402 410 418 422 426 430 434 438 442 446 450 454 458 

462 466 470 474 478 482 494 

501 - 600 14 510 514 522 526 530 534 538 542 554 558 562 570 578 

590 

601 - 700 16 606 610 614 626 630 634 642 64b 650 654 658 662 670 

682 690 698 

701 - 800 14 714 722 738 742 750 754 758 762 770 778 786 790 794 

798 

801 - 900 12 810 822 826 830 842 854 858 862 870 874 886 898 

901 - 1000 15 902 910 918 922 926 942 946 950 958 966 978 986 990 

994 998 

1 - 1000 138 

SB- 
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Table XXI 

e, ,  ..        .. mn.T iTi mn Solutions to z = x     - y    in Largest Integers x    ,  y 

for 0 < z s 1000 and yn < xm ^ 1024 m, n Prime 

m n X y z 

2 2 500 499 999 

3 2 939 787 911 054 064 307 

2 3 611 085 363 720 114 225 

3 3 18 17 919 

5 2 377 2 759 646 341 

5 3 6 19 917 

2 5 45 531 73 368 

3 5 39 9 270 

5 5 4 3 781 

7 2 8 1 448 448 

7 3 4 25 759 

7 5 2 2 96 

2 7 5 986 12 388 

3 7 14 3 557 

5 7 7 4 423 

7 7 2 1 128 

11 2 3 420 747 

U 3 2 12 320 

2 11 422 3 937 

3 11 14 2 696 

7 11 3 2 139 

13 2 2 85 967 

13 3 2 20 192 

13 5 2 6 416 

2 13 1 263 3 846 

17 2 2 361 751 

2 17 11 364 3 33J> 

19 2 2 724 112 
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are not exactly comparable to those given here.    In our calculations we 

recorded differences of powers up to z ^ 10, 000 and can state that for 

6 8 
4. 64x10    £x£10   there are only four additional solutions: 

-3753 = 50242383 - 112617350552 

7670 = 63690393 - 160735150932 

-6856 = 275641053 - 1447157645592 

-1090 = 281873513 - 1496516106212 

Catalan's conjecture,  that equation (1) with z = 1 has only one non-trivial 

solution,   is a problem studied much but not yet completely solved. 

J. W. S.   Cassels [3] and K.  Inkeri [4] have made recent contributions 

to the theory of this problem. 

C.        ARITHMETIC PROGRESSIONS 

T, m       n       n       k   .,       ..     .. k      n      m , Ifz = x      -y    =y    -w,  then the three powers w  ,  y  ,  x     form an 

arithmetic progression with common difference z.    The set of solutions 

to (1) was examined to find values of z for which there were two solutions 

(or more) having a common term.    There are thirty-one progressions 

of three terms identified in this way,  listed in Table XXII.    There are no 

progressions of four terms in the range covered. 

A.  Guibert [s] gave the general solution for three relatively prime squares 

a   ,  b  ,  c    in arithmetic progression: 

+ /2        2      ■>     \    U        2J
2 2        2J.^ a = ± (p    - q    - 2pq),   b = p    +q,c = p    -q    + 2pq, 

where p and q are relatively prime and not both are odd.    Euler [6] 

proved that four distinct squares cannot be in arithmetic progression. 

-60- 
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Table XXII 

Arithmetic Progressions 

Difference Progression Powers 

24 1   25  49 1   52 72 

28 8  36  64 23 62 26 

44 81  125  169 3" S3 132 

87 169 256  343 132 28 73 

96 4  100  196 22 102 U2 

100 25  125  225 52 53 152 

112 32  144 256 25 122 28 

118 125 243  361 53 35 192 

120 49 169 289 72 132 172 

141 343  484 625 73222 54 

147 49  196 343 72 U2 73 

184 32 216 400 25 63202 

216 9 225 441 32 I52 212 

240 49 289  529 72 172 232 

336 289 625 961 n2 5
4312 

384 16 400 784 24 202 282 

433 1331 1764 2197 ll3 422 133 

441 343  784 1225 73 282 352 

448 128 576 1024 27242 2,0 

480 196 676 1156 142 262 342 

600 25 625 1225 52  5
435

2 

600 400 1000 1600 202 103 402 

720 961 1681 2401 312 412 74 

61 
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Table XXU (Concluded) 

Arithmetic Progressions 

Difference Progression Powers 

828 1369 2197 3025 372 133 552 

840 1  841 1681 1  292 412 

840 529 1369 2209 232 372 472 

864 36 900 1764 62 302 422 

936 64 1000 1936 26 103 442 

944 3025 3969 4913 552 632 173 

960 196 1156 2116 142 342 462 

980 784 1764 2744 282 422 143 
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There are infinitely many progressions of the form a  ,  b ,  c    where 

n        2        2 
n > 2.    For.  if b is the sum of two squares,  so is 2b    = a    + c  .    The 

smallest examples are 81, 125, 169 and 25, 125,225 derived from 

2-53 = 92 + 132 = 52 + 152. 

It has been shown that three distinct positive cubes [?] or biquadrates 

[8] cannot be in arithmetic progression.    There are no known instances 

of three distinct positive n     powers in arithmetic progression for n ^ 5. 

That is, a    + b    = 2c    has no known non-trivial solutions for n ^ 3. 

A. Makowski [9] proved that there is no progression of three powers 

with the common difference 1. 

It is possible to construct any number of arithmetic progressions of 

arbitrary length in which each term is a power.    To show this,   let 
al      a2 ar x.   , x-   ,   . . . ,  x      be a progression of powers with r ^ 2 terms and 

a 
common difference d $ 0.   Then,if y = x      + d is not already a power, 

let c be the least common multiple of a. ,  a,,  .... a    and let c = a.b. r 12 r ii 

for 1 S i * r.    Then the sequence 

c  al      c  a2 c  ar      c + 1 
y x»   ,  y XA   ,  . . .,  y x     ,  y 

is the same as 

b.       a.        b-,      a? b        a 
(y    Xj)     ,   (y    x2)     ,   . . . ,   (y    xr)   r,  y 

c + 1 

a progression of powers with r + 1 terms and common difference y d. 

3      2       6 
For example,  from the progression 8, 36,64 = 2   ,6,2    whose next 

term is 64 + 28 = 92,  we can derive the progression 

926 •  23,  926 •  62,  926 •  26.  927 = {2-922)3,  (6-923)2,   (2-92)6,  927 

• 63- 



■^^ ^j"J "l'    . 'Ml''*r' 

of four terms.    This method produces progressions in which all terms 

have a common factor > 1.    It is not known whether there exists a pro- 

gression of powers of more than three terms for which no integer > 1 

divides every term.    We have seen that if there is such a progression, 

the common difference must exceed 1000 or one of the terms must 

exceed 10 

■ 64. 
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Vn.    TWO EQUAL SUMS OF FOUR FIFTH POWERS 

A.        DISCUSSION 

We shall derive three parametric solutions of the Oiophantine equation 

T 

555 55555 
A, + A, + A, + A^ = Bf + B, + B, + B^ IZ341234 (1) 

5 5 for which we also use the notation (A.,  Ay, A,,  AJ    = (B.,  B2,  B^,  B.)  . 

5 5 5        5 By generating and sorting numbers of the form A.  * A? + A, + A. on a 

digital computer it was observed that (1) has many solutions in moderately 

small positive integers and that a large proportion of these solutions 

satisfy the additional conditions 

Aj + A2 = Bj + B2 A, + A. = B- + B.. 3 4 3 4 (2) 

5 5 For example, the solution of (1) in least integers is (5, 6, 6, 8)    = (4, 7, 7, 7) 

which also satisfies (2), since 5 + 6 = 4 + 7,  6 + 8 = 7 + 7. 

If we set 

A,  = u.  + v.  + w. 

A2 = u,  - vj w, 

A3 = u2 + v2 - w2 

A4 = u2 - v2 + w2 

Bl ="! ^j -wj 

B2 = ul  - vl ^Wl 

B3 = u2 + v2 - w2 

B4 = U2 v2 - w2 

(3) 

it follows at once that (3) is a solution of (2).    Equation (i) will also be 

satisfied provided that 

/  2 ,    2 J     2. .  2 ,    2 J      2k 
ulvlwl {ul + vl + wl) " U2V2W2 (u2 + v2 + w2)- (4) 

For the least solution,   (uj,   Vj,  Wj) = (11. 2. 1;.   (u2.   v2,   w2) = (14, 1.1),  and 

11« 2-1 (ll2 + 22 + I2) = 22- 126 = 2- 11-9- 14 = 14- 198 = 14- 1- 1 (142 + I2 + I2). 
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The first two parametric solutions are obtained by applying to (4) a well- 

known geometric method related to plane curves of the third degree.    If 

P is a rational point on a curve C,and if the tangent to C at P intersects 

C again, the intersection has rational coordinates.    If C has an asymptote 

A with rational slope and the line through P parallel to A intersects C again, 

this intersection is also a rational point. 

Consider the Cartesian curve C with equation 

xab (x2 + a2 + b2) = yac (y2 + a2 + c2) abc 4 0, (5) 

3 3 3 
which has an asymptote bx    = cy    of rational slope m,provided b = cm . 

Then x = c, y = b is trivially a rational point P on C.    The line through P 

with slope m intersects C again in the point with coordinates 

r   2  .    2  .    2    2 .    2      ,.2-,,,    2 x=La    +c    +cm    (m    - 1)   J/3m c 

2 
y = mx + mc (m    - 1). 

After clearing of fractions, this gives the following parametric solution to (4): 

2X/6        94J.       2,,.      2 u.   = a    + (m    - 2m    + m    +  1) c 

.     5    2 v.   = 3m    c 

w.   = 3m    ac 

u., = ma    + (m    + m    - 2m    + m) c (6) 

,22 Vy = 3m    c 

,    2 w? = 3m    ac. 

For each rational m there results a solution to (1) in homogeneous 

polynomials of the second degree in two variables.     The least primitive 

solutions to (1) produced by (6) with integer arguments have 
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(m. a, c) = (2,1.1) and (2. 1,3) which give (23, 73, 74, 74)5 = (35. 61, 62, 86)5 

and (7, 70, 89. 94)5 = (43, 53, 58, 106)5,  respectively. 

Next,  the tangent to C at P has the equation 

y = k.x + k, (7) 

where k   = b (a2 + b2 -I- 3c2) 
1     c (a2 + 3b2 + c2) 

k2 = b - kjc 

and intersects C again in a point with abscissa 

2c, 
3c k2 k2 

b - ck 
(8) 

Equations (7) and (8) together with 

u.   = x        v. = b w.  = a (9) 

u7 = y        v? = c        Wp = a 

provide another solution to (4) in the three parameters a,  b,  c.    The two 

least primitive solutions to (1) produced by (9) have (a, b, c) = (2. 1.5) and 

(2. 1. 3),givmR rtspectively (11. 17,22,28)5 = (7, 21, 24, 26)5 and 

(28, 30. 39. 45)5 = (24. 34. 41. 43)5. 

A third solution is derived by taking (4) together with the additional condition 

UJVJWJ  =u2v2w2! (10) 

which implies (for non-trivial solutions) 

2 .     2 a     2        2 ^    2 x     2 

ul + vl + wl = u2 + v2 + W2- 

(When (3).   (10),and (11) are satisfied.   {Ay   A2.   A3.   A4)n = (Bj,   B2>   B^.   B4)n 

for n = 1    3 and 5. ) 
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A solution of (11) can be written 

u. = x + a y-b       w. = z - c 

U2=x-a       V2=y + b       w_ = z + c 

where a,  b,  c, x,  y, z are any rational numbers satisfying the single 

condition 

(12) 

ax = by + cz. 

Substituting (12) into (10) and using (13) to eliminate x gives 

(yz) b2 + c(y2 + z2 - a2) b + yz(c2 - a2) = 0. 

If b is rational,  the discriminant of this quadratic equation must be a 

square,   say k  .    This condition may be written 

2 
c    (y + a + z)(y + a-z)(y-a+z)(y-a.z) = (k + 2ayz) (k - 2ayz). 

Assuming that 

k + 2ayz = c (y + a + z) (y - a + z) 

k - 2ayz = c (y + a - z) (y - a - z) , 

we find using (14) and (13) that 

(13) 

(14) 

(15) 

(16) 

\, i *■  ,    c        2.    , c/2.2        2. a = c, k=c(y    +z    -c),   b=- —   (y    +z    -c), 

2       2 c   - y 
(17) 

After clearing of fractions and making a slight change in notation,   the 

resulting solution to (4) is 

1 b (c2 - b2 + ac) 2        2 
u2 = b (b    - c    + ac) 

2        2 2        2 (a + c) (b    - c    ■»- ac)      v, = (a - c) (c    - b    + ac) 

w, = ab (a - c) 
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w., = ab (a + c) 

(18) 
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The primitive solutions to (1) in integers not exceeding 50 produced by 

(18) are given in Table XXIII.   In preparing this table terms were trans- 

posed so as to be written positively,  and common factors were removed. 

The following two-parameter solution to (1) was given by G.  Xeroudakes 

and A.  Moessner [l]: 

Aj = - p2 +4pq + 9q2 A2 = 3p2 + 12pq + 21q2 

2 2 2 2 
A3 = p    +8pq + 3q A    = 3p    + 12pq + 21q 

Bj = 3p2 + 16pq + 17q2 B2 =  - p2 ^ 13q2 

B3 = p2 + 12pq + 23q2 B    = 3p2 + 8pq + q2. 

This can be obtained from (18) by setting a = p + 2q,   b = 2q,   c - q.     The 

first solution in Table I corresponds to this case for p = - 5.  q = 3. 

Equations (18) produce solutions to (1) which can be written with at most 

one term non-positive.    Two primitive solutions involving a zero term 

are obtained by setting (a,   b;  c) = (1, 10, 14) and (9, 20, 5) which give 

(38, 105, 123)5 = (13,23, 110, 120)5 and (30.40. 55)5 = (6, 19, 49, 51 )5. 

respectively. 

In conclusion we remark that the general solution of (4) is yet to be obtained; 

none of the parametric solutions contained here produce,   for example,  the 

least solution 

11-2- 1  (ll2 + 22 + I2) = 14- 1- 1  (142 + I2 4  I2) 

mentioned previously.    The general solution of (1) without the rest   iction 

imposed by (2) is also wanting.    The least solution of (1) which does not 

satisfy (2) was found on the computer to be (1, 1 , 3, 24)    = {6, 15,15. 23)   . 
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Table XXHI 

Primitive Solutions to T A. 
1     l 1 l 

a b c Al A2 A3 A4 Bl B2 B3 B4 

1 1 6 3 1 13 17 23 3 9 21 21 

2 1 6 2 6 16 18 24 7 13 21 23 

3 1 1 3 7 21 23 33 11 13 29 31 

4 3 14 10 5 20 22 34 9 12 27 33 

5 1 2 4 1 21 27 39 7 11 33 37 

6 1 2 5 9 21 31 39 13 15 35 37 

7 3 20 7 11 28 34 44 13 23 39 42 

8 1 12 5 12 23 39 45 14 20 42 43 

9 1 12 3 21 30 39 45 22 28 41 44 

B. REFERENCE 

Cl]     G.  Xeroudakes and A.  Moessner,   "On Equal Sums of Like Powers," 
Proc.  Indian Acad.  Sei.  Sect.  A.   v.   48,   1958r  pp.  245-255. 
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Vm.    EQUAL SUMS OF THREE FIFTH POWERS 

DISCUSSION 

The Oiophantine equation 

4 

Al+A2+A3 
5 5        6 

Bl + B2 + B3 (1) 

was solved in positive integers first by A.   Moessner [l] who gave 

49    + 75    + 107    = 39    + 92    + 100 .    Two parametric solutions were found 

by Swinnerton-Dyer [2], which result in polynomial solutions of a rather 

high degree that were not explicitly given.    (Dyer did give a single numeri- 

cal result which appears to be incorrect. )   Both Moessner's and Dyer's 

solutions satisfy (1) together with the additional condition 

Al+A2 + A3 Bl + B2 + B3 * 
(2) 

In a computer study [3] the solution of (1) in least integers was found to 
5 5 5        5 5 5 be 24   +28    +67    =3    +54   +62 .which also satisfies (2), as do a great 

many of the other solutions obtained by search.    The least solution of (1) 
5 5 5 5 5 5 

which does not also satisfy (2) is 26    + 85    + 118    = 53    +90    + 116   ,   showing 

that (2) is not necessary in solving (1).    In this paper we derive by geometric 

methods a 3-parameter solution to the system (1),   (2),which yields Moessner's 

numbers as well as other solutions in moderately small integers.    A particular 

version of this solution is given explicitly as a set of polynomials of the ninth 

degree in a single variable. 

Suppose that the Diophantine system (1),   (2) has the known solution 

a.,  B. = b.,   i r      i        i 

'V 7o=a3' 

1.  2,  3. 

then 

If u = b. a3.  v = a2 V Xo = aJ u, 

(x + u)5 + (y + v)5 + z5 = (x + v)5 + y5 + (z + u)5 (3) 

is the Cartesian equation of a surface  S which passes through the point 

P    (x  ,  y  ,  z   ) and contains the parallel lines o '  o    7o      o r 

L,   : x = y = z L2 : x u = z - v 

Each rational point P (x,  y,   z) of S gives a rational solution of (1),   (2) 

through the equations 

A.  = x + u y + v '3 " 

-73- 

B, x + v     B, = y B^ = z + u .   (4) 



mmmm Tram ■ ■ ■ n-ir ^ 

A solution in integers may be obtained by multiplying A, ,   A-,  . .. ,  B. so 

as to clear of fractions. 

555 
In expanding (3) the terms in x  ,  y   ,  z    vanish and therefore  S is a surface 

of the fourth degree.    A rational line p; ising through three rational points 

of S will intersect S again in a fourth rational point.    Let  T be the plane 

tangent to  S at P   and P. the intersection of T with the line L., j = 1 or 2. 
o j j   ^ 

The equation of T is rational,  P. is rational,  and thus P P. is a rational 

line intersecting S in three rational points; that is,  twice at P   and once 

at P..    Hence P P. intersects  S  in a fourth rational point Q.,which in some 

cases gives a new solution to (1).    If P   falls on L.  {L?),  the solution 

degenerates, because then T contains L, (L,) and is parallel to L? (L,). 

It may also happen that the new solution is trivial.    However,  for certain 

initial solutions a.,  b. new non-trivial solutions are in fact obtained, r     i 

4       4 The normal to S at P   has directions d, : d, : d, where d. = a.   - b.  and o 12     3 ill 
the coordinates of P.fr,,  y. ,   z.),   P2(x2, y2,   z2) may be written 

xl  = ^1 = zl = (xodl + yod2 + zod3)/(dl + d2 + d3) 

x- = y, - u - z- - v = x.  - (d2u + d3v)/(d.  + d- + d3) . 

The equation of P P. can be written parametrically as 

x = x    + h, t o        1 y = y0 + h2t z    + h,t o        3 (5) 

for j = 1 or 2,  where h,  = x.  - x  ,   h_ = y. - y  ,  h, = z.  - z    .    On substituting J 1        j        o      2     7j     7o      3        j        o e 

(5) into (3) there results an equation of the form 

in which 

437 
c .t    + c,t    + c-t" fc.t + c    = 0 4 3 2 1 o 

3        4 
c. r- 5   E     h   (a. - b.) 

4 i=l     l     l       1 
c_ = 10   E    h3 (a2 - b2) 

3 .11 1 
1 = 1 

(6) 

Three of the roots of this equation are t = 0,  0,   1 and so the fourth root 

is t = -(c.-/c4) - l.which together with (5) gives the coordinates of Q.. 
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If the minimal solution of (1) is used as an initial solution,the two  resulting 

new solutions (actually there are several sets corresponding to permutations 

of the a. and b.) involve integers of 17 digits.    If instead we attempt to use 

a trivial initial solution in which the b. are simply a permutation of the a., 

the new solution is either degenerate or trivial. 

However,  a trivial initial solution of the type 

aj = P        »2 = 'p       a3 = r        bl = «I        b2 = r       b3 = -^ (7) 

does produce new solutions.    It is sufficient to use Q,,   to take r > 0,   p > 0, 

|q | > p and have p,  q,   r all distinct in magnitude.    Some results for small 

integer values of the arguments p,  q,   r are given in Table XXIV; it will be noted 

that Moessner's solution is the smallest obtained. 

The foregoing provides an implicit parametric solution of (1),   (2) in three 

integer variables (or two rational variables), but does not give the results 

explicitly in a form which facilitates the calculation of numerical solutions. 

Accordingly,  a specialized solution was computed for (7) with p = -2,   q = 1, 

using the case j = 2 of (5).    After clearing of fractions, the result is 

Aj  = -2r8 + 10r7 + 20r6 + 20r5 + 34r4 -  10r3 - 270r2 - 20r - 682 

A2 = 2r8 + 10r7 - 20r6 + 20r5 - 34r4 -  10r3 + 270r2 - 20r + 682 

A, = r9 - 22r5 -  125r3 - 79r 
3 ^ (8) 

Bj = r8 + 10r7  -  lOr    + 20r5 - 92r4 -  I60r3 - 15r2 - 320r + 341 

B2 = r9 - 22r5 + 175r3 + 521r 

B3 = -r8 + 10r7 + 10r6 + 20r5 + 92r4 -  I60r3 + 15r2 - 320r - 341 

The values of these polynomials for several small rational arguments (after 

clearing of fractions and removing any common factor) are presented in 

Table XXV. 

In conclusion we note that the solutions obtained can be put in one of the two 
555555 555555 

forms A    + B    + C    = D    + E    + F    or A    + B    = C    + D    + E    + F    where 

A, B, C, D, E, F are positive integers.     The last three entries in Table 1 

are examples of the latter type. 
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Table XXIV 

5 5 5 5 5        5 Primitive Solutions of A. + A- + A^ = Bj + B- + B- 

p q r Al A2 A3 Bl B2 B3 

-3 2 -907 -549 1378 -1087 -414 1423 

-2 3 -49 -107 -75 -100 -39 -92 

2 3 803 289 561 808 309 536 

3 2 293 -501 754 959 498 -911 

3 5 1157 543 1135 1271 885 67 9 

2 -4 1 346 -1162 641 -1724 -127 1676 

2 3 1 1084 -252 -433 1249 243 -1093 

3 4 1 1783 -763 -699 1974 1 -1654 

Table XXV 

5        5 5 5 5        5 
Primitive Solutions of A. + A2 + A- = B.   + B2 + B- 

Derived from a Polynomial Solution 

r Al A2 A3 Bl B2 B3 

3 100 92 39 49 75 107 

4 614 1018 1028 773 1124 763 

1/2 -1724 1676 -127 346 641 -1162 

3/2 -13964 24572 -13701 -19334 25467 -9226 

5/2 44684 36516 -2505 2558 29495 46642 

8 -2654 20126 53912 14271 53976 3137 

2/3 -57738 55866 -6626 4137 28366 -41001 

1/4 -74552 73464 -2301 27244 14083 -44716 
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IX.    EQUAL SUMS OF BIQUADRATES 

A.        DISCUSSION 

4444 
Solutions of the Diophantine equation A  +B  «C  +D   in least integers have been 

obtained by several authors (References 1,2.3.4).    The term primitive denotes 

a solution for which unity is the greatest common divisor of all the numbers 

A, B, C, D.    A CDC 3Z00 computer program was written to search exhaustively 

for primitives,  yielding the 31 solutions listed in Table XXVI.    The range covered 
4     4 15 

is A +B <7. 885x10     .    The first six solutions were identified in Reference 3 

and the seventh is cited in Reference 1. 

Euler (Reference 1) gave a two-parameter algebraic solution which can be 

written 

A=f(x.y) B=f(y.-x) C=f(-x, y) D=f(y,x) 

where f(x, y) = 2x  -x  y+20x y +17x y  +2x y  +17x y +8xy  -y  .    The primitives 

corresponding to i=l, 7, and 14 of Table XXVI are special cases of this solution for 

the arguments (x,y) = (3,l),   (2,1),  and (5, 1), respectively. 

4     4 The computer program generated all values of N=A  +B    in ascending order 

by controlling the advance of a series of pairs of values A, B while monitoring 

N for coincidences.     To advance from a given starting value of N,  all integers 

A for which N/2s A   s N were considered; for each A a corresponding B was 
4     4 

chosen as the largest integer in the range 0 S B ^ A for which A  +B  s N.    Then 
4     4 

the smallest value A.+B,  in the set was found and B. was advanced if B.<A., 

the lower limit on A was advanced if B.=Aj,   and the upper limit on A was 

advanced if B^O. 

4      4     4 
A similar computer program generated sums of three biquadrates A   +B   +C 

in ascending order and found the least triple coincidence to be 

811,538=294+174+124=284+214+74^274+234+44. 

It was discovered quite by chance (using a computer program which decomposes 

numbers into sums of biquadrates by trial) that for the N. of Table XXVI 
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Table XXVI 

4      4      4      4 
Primitive Solutions of N=A  +B  =C  +D 

i N. 
i 

A B C D 

1 635,318.657 158 59 134 133 

2 3,262,811. 042 239 7 227 157 

3 8,657,437.697 292 193 257 256 

4 68,899. 596,497 502 271 497 298 

5 86,409,838. 577 542 103 514 359 

6 160.961, 094. 577 631 222 558 503 

7 2. 094.447,251,857 1203 76 1176 653 

8 4,231,525,221,377 1381 878 1342 997 

9 26,033,514.998,417 2189 1324 1997 1784 

10 37,860,330.087. 137 2461 1042 2141 2026 

11 61,206.381.799.697 2797 248 2524 2131 

12 76.773.963. 505. 537 2949 1034 2354 1797 

13 109.737.827.061. 041 3190 1577 2986 2345 

14 155,974.778. 565.937 3494 1623 3351 2338 

15 156.700.232,476,402 3537 661 3147 2767 

16 621, 194,785,437,217 4883 2694 4397 3966 

17 652,057,426, 144, 337 5053 604 5048 1283 

18 680,914.892, 583.617 4849 3364 4303 4288 

19 1.438, 141.494, 155,441 6140 2027 5461 4840 

20 1,919,423,464. 573,697 6619 274 5942 5093 

21 2.089.568.069, 060. 657 6761 498 6057 5222 

22 2, 105. 144,161, 376. 801 6730 2707 6701 3070 

23 3.263.864,585,622, 562 7557 1259 7269 4661 

24 4. 063,780,581. 008.977 7604 5181 7037 6336 

25 6. 315.669.699.408, 737 8912 1657 7559 7432 

26 6. 884.827, 518, 602, 786 9109 635 9065 3391 

27 7, 191, 538,859, 126,257 9018 4903 8409 6842 

28 7. 331,928,977, 565, 937 9253 1104 8972 5403 

29 7, 362, 748,995, 747,617 9043 5098 8531 6742 

30 7,446,891,977, 980, 337 9289 1142 9097 4946 

31 7, 532. 132,844,821.777 9316 173 9197 4438 
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1^ + 1=635, 318, 658=1594+584+l4=1344+1334+l4=1544+834+714 

is the sum of three biquadrates in three distinct ways,  and that 

N.+ 1=8, 657, 437, 698 is the sum of three biquadrates in five distinct ways, 

namely, 

(296, 157. 139)^(293, 184, 109)4(292, 193, 1)^(271, 239, 32)^(257. 256, 1). 

B.        REFERENCES 

i.      Dickson,   L.   E. ,    History of the Theory of Numbers,  v. 2 

(Washington,   1920),  pp.  644-647. 

2. Ogilvy,  C.   S. .  "Tomorrow's Math," (Oxford,   1962),  p.   94. 

3. Leech,  J. ,  Proceedings Cambridge Philosophical Society 53 (1957),  p.   779. 

4. Spira,  R. ,  Mathematics of Computation 17 (1963),  p.   306. 

81- 

-   ——->-—^"—j  



* -. —- ■■ - =? 

1 

X.    GEOMETRIC ASPECTS OF EULER'S DIOPHANTINE 

EQUATION A4 + B4 = C4 + D4 

A. INTRODUCTION 

Euler [ l],   [2] gave two parametric solutions of the Diophantine equation 

A4 + B4 = C4 + D4
> (1) 

but the general solution is presently unknown.    We give a geometric deri- 

vation of Euler's solutions and apply the geometric methods to obtain a new 

parametric solution,  several new particular solution's and two complex 

parametric solutions.   Related work by other investigators is also discussed« 

In a previous study [3],   [4], the 46 smallest primitive solutions of (1) (those 

in which any factor common to A,   B,  C, D has been removed) were found by 
4        4 generating and sorting integers of the form a   + b   on a digital computer. 

These primitive solutions will be referred to as a., a, ranked in order 

of increasing magnitude of the common sum A    + B .    We say a = (a, b, c,  d) 

is a solution ifA = a,  B = b,  C = c,  D = d satisfies (1).    For example, 

Ol = (158,  59.   134.  133). a7 = (1203.  76,  1176.  653). a14 = (3494,  1623,  3351, 2338), 

a39 = (12231,  2903.   10381,   10203), and a46 = (15109,   581,   14723., 8461). 

B. EULER'S ALGEBRAIC SOLUTION 

Euler treated (1) by setting 

A = p + q B = r-s C = p-q D=r + s        or (2. 1) 

2p = A + C      2q = A - C      2r = D + B      2» = D - B (2.2) 

which reduces (1) to 

Pq (P    + q   ) = rs (r    + s   ). (3) 

To each set of four positive integers A, B, C,  D satisfying (1) there correspond 

64 sets of integers (p, q,   r.   s) satisfying (3) obtained by using (2.2) and 

generating trivially different sets such as (p. q.  s,   r),  (q,  p,  r,  s),  (p, -q, r, -s). 

A quite distinct solution of (3) is obtained by interchanging C and O in (2. 1): 

A = pj + qj B = rj  -  Sj        C = Tj + Sj D = Pj - qj (4.1) 

2PJ = A + D       2q1 = A - D      2^ = C + B       28J = C - B (4. 2) 
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and there are similarly 64 sets such as (p., q., r. , s.) which satisfy (3). 

For a, we have (p, q, r, s) = (146, 12, 96, 37) and (2p., Zq., Zr., Zs.) = 

(Z9i,  25,   193,  75).    The paired solutions to (3) are related by the equations 

Zpj = p + q + r + s Zp = pj + qj + rj + Sj 

Zqj = p + q - r - s 2q = pj + q1 - rj  - Sj 

Zrj = p - q + r - s Zr = Pj - qj + rj - Sj 

Zs,  = p - q - r + s Zs = p.  - q.  - r,  + s.  . 

On substituting z = q/s, v = (rs/pq) -  1,   (3) becomes 

(z2-l)2 + v(3z4-4z2 + l) + v2(3z4-6z2) + v3 (z4.422) - v4z2 = [i(z2.v.l)]2 (6) 
if 

and Euler made the quartic function of v on the left-hand side of (6) a square 
2 2   2 

in two ways.    First it was equated to C(z   -1) + fv + gv  ]    and f and g were 
2 ' chosen to make the coefficients of v and v    in the resulting equation vanish. 

A rational solution of v as a function of z results.    Euler [l ] did not give the 

final algebraic result explicitly but did give the numerical solutions 

(2061Z83.   1584749,  Z219449.   555617) and a39 for z = 2 and z = 3,   respectively. 

By completing the polynomial calculation,we find a solution of the 13th degree: 

(7) 

p - 3 (z2-l)2 (9z8-44 z6 1  190 z4 + 100 z2 + 1) 

q = z (z12 - 214 z10 - 2481 z8 - 2804 z6 - 2481 z4 - 214 z2 + 1) 

r = 3z (z2-l)2 (z8 + 100 z6 + 190 z4 - 44 z2 + 9) 

s = z12 - 214 z10 - 2481 z8 - 2804 z6 - 2481 z4 - 214 z2 + 1. 

These polynomials do not seem to have been previously recorded.    In the 
2 2 

second approach the quartic function in (6) was equated to C(l +dv) (z   -v- 1)] 
2 

and upon removing the common factor (z    - v - 1) there results 

v3 (z2 + d2) + v2 (3z2 - d2z2 + d2 + 2d) + v {3z2 - 2dz2 + 2d + 1) = 0 

which is solved rationally by choosing d so that the coefficient of v vanishes. 

This leads to the well known solution [2] of the 7th degree: 

p = 2 {4z6 + z4 + 10z2 + 1) r = 2z (z6 + 10z4 + z2 + 4) 

2 4 2 ? 4 2 W 
q =  -z (z    + 1) (z    -  18z    +1) s = .{zC + 1) (z     -  18z    + 1) 
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which produces O,, O-, (T. . for z = 3,  2,   5.    In addition to the two parametric 

solutions, Euler [5] found the particular solution a^ = (542,  103,  514,  359) 

by making special assumptions. 

C.        GEOMETRIC INTERPRETATION 

If we set 

p/s •/s z = q/s (9) 

then (3) becomes 

3 x 3.3 y    +y = xz+xz. (10) 

For a fixed rational z we may interpret (10) as the Cartesian equation of a 

cubic curve K in the xy plane,  symmetric with respect to the origin and passing 

through the rational point P with coordinates x = 1,  y = z.    Each rational point 

on K corresponds to a solution of (3) through the relations p = xs,  q = zs,   r = ys 

for arbitrary s.    The point P gives the trivial solution p = s, q = r.    Now a 

straight line in the xy plane intersects K in one or three real points (possibly 

at infinity) so the tangent to K at PQ (XQ,  y0) intersects K again in Pj  (Xj,  y^). 

If P0 is a rational point,  the tangent has a rational equation, and as XQ,  XQ, x. 

are then the three zeros of a rational cubic polynomial,   P.  is also a rational 

point on K. 

3 2 2 The tangent at PQ has slope t = (z    + 3x0z)/(3v0 + 1) and the coordinates of 

Pj are Xj = -2x0 -  C3t2 (y0 - tx0)/(t    - z)],   y^ = t(x1 - XQ) + y0.    By setting 

xn = ^ Yn ::: z we find 

.   -2 (4z6 + z4 -t- 10 z2 + 1) 
1       (z2 + 1) (z4 - 18 z2 + 1) 

-2z (z6 + 10 z4 + z2 + 4) 

(z2 + 1) (z4 18 zc + 1) 

2 4 2 and if s = -(z    + 1) (z    - 18 z    +1),  the solution (8) results. 

If z = m  ,  K has the  rational asymptote y = mx and a line through PQ (XQ,   yQ) 
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parallel to this asymptote must intersect K again in a rational point 

P2 ^x2' y2^    We find 

x2 = ^ + (y0 " rnx0)   ^3m  •  Yz = m (x2 " x0) X yQ and if x0 = 1'  y0 = z 

then x2 = (m6 - 2m4 + m2 + l)/3m2.  y2 = m (m6 + m4 - 2m2 + l)/3m2. 
2 

Setting s = 3m   there results the following solution to (3): 

6,4.2.. _       /6.4-2.1x p = m    - 2m   + KI    + 1 r - m (m    + m    - 2m   + 1) 

,5 ,2 (11) q = 3m s = 3m 

This solution was given by A.   Gerardin [6] and an algebraic derivation   of 

it due to P.  S.  Dyer [?] can be found also in Hardy and Wright [8].    The 

solutions to (1) produced by (11) are in fact the same as those given by (8). 

The explanation is that the rational transformation m = (z + 1 )/(z - 1) carries 

(p,  q,   r,   s) of (11) into polynomials proportional to (-s.,   r.,  p.,   -q.) 

obtained by applying the transformation (5) to (p,  q,   r,   s) of (8).    If we 

reverse this procedure for Euler's first solution,  applying (5) to (7) and 

then substituting z = (m + l)/(m -  i),we get the following solution which is 

simpler than,   but equivalent to, (7): 

p = m (m      + 2m      - 3m    + 7m    - 12m    + 5m    + 1) 

q = m      - 4m      + 3m    + 4m    - 6m    - m    +1 (12) 

r = m (m12 - m10 - 6m8 + 4m6 + 3m4 - 4m2 + 1) 

12  , ,     10      ,_    8 ^ _    6     ,    4 A ,    2   .   , s = m      + 5m      - 12m    + 7m    - 3m    4 2m    + 1 . 

This solutio*     an also be found geometrically using the fact that a line 

joining two rational points P.  (x.,  y.),   P? {x?,  y?) of K intersects K in a 

third rational point P, (x,,  y-'.    The slcpe of the line is t = (y2 - y.)/(x2 - x.) 

and x, = -  [x.  + x, + 3t    (y,  - tx. )/ (t    - z)].  y, = t (x^ - x, ) + y..    Given any 

initial solution (p0>  q0I   rQ,   sQ] of (3), take x. = A,  yj = z = qQ/s0, 

x2 = P0^ 80,  y2 = r0^s0'    The sloPe t is then (ro " q0^P0 ' s0^    ^ we take 

(p-,  q0,   r^,   s0) to be the polynomials (s.   r,  q,  p) of (11)-   then t = m and 

the new rational point (x^,  y,) gives a solution equivalent to (12).    A new 

solution of the 19th degree is obtained by taking (p0;   qn,   r-,   s0) = 

(r,   s,  q,  p) from (11), and Xj = -1,  y1 ^ .z ^ -q0/s0    x2 = PQ/SQ.  y2 = r0/80 

which leads to 
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19 18     ,    17     .    16.,,     15     0    14     ..    13  . -.^IZ     ,0   H p = m      - m      - 3m     - 3m      + 21m      - 9m      - 44m      + 74m      - 39m 

- 21m10 + 84m9 - 132m8 + 115m7 - 73m6 + 45m5 - 21m4 + 12m3 - 6m2 + m - 1 

q = 3m2 (m12- 4m10 + 18m9 - 36m8+27m7+m6 - 9m5 + 9m4 - 9m3 

+ 5m2 + 1) 

r = 3m2 (m15-3m14-m13 + llm12- 12m11+4m10 + 10m9 - 30m8 + 39m7 

- 37m6 + 41m5. 33m4 + 16m3-8m2 + 3m-I) 

a = (m6-2m4+ m2 + l) (m12 - 4m10 + ? 8m9 - 36m8+ 27m7+ m6 - 9m5 (13) 

+ 9m4- 9m3+5m2 + l). 

These polynomials give a, for m = • 1 and new solutions such as (A,  B,  C,  D) = 

(134413.     31313,   114613,  111637),   (1057167.  552059,  1054067,  545991) for 

m = 2,   -2.    The particular result for m = 2 was found by E.   Fauquembergue 

[9] using another algebraic method. 

B.  Segre Cl2] has given a general geometric treatment of fourth order 

Diophantine equations which correspond to quartic surfaces containing 

rational lines.    In his paper two geometric transformations are introduced 

whichfor (1) lead to Euler's solution (8) and more generally to a discontinuous 

infinity of rational parametric solutions,  not given explicitly. 

D.        COMPLEX SOLUTIONS 

The rational complex points x =     iz,  y = i lie on K and the tangent at each of these 

points has a second rational intersection with K,  giving the following solutions to 

(3) of the 5th degree in Gaussian integers: 

4 4 
p = iz (z    - 2) r = i (- 2z    -M) 

4 4 (14. 1) 
q = z (z    -f 1) s = z+l 

4 4 
p = - iz (z    4 2) r = - i (22    + 1) 

q = z (z    - 1) s = z-l 

E.        PARTICULAR SOLUTIONS 

By  starting  with any  of the polynomial  solutions  already  given and  em- 

ploying the  geometric   techniques  discussed  here,   further  parametric 
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solutions  may be  obtained.     Whether  or  not such procedures  eventually 

yield all  rational soultions  to (1)  is  not apparent.      The primitives 

a- = (239,  7,   227.   157) and (T    = (292.   193.  257,   256) found by A.   Werebrusow 

[ 10]     are not produced by  Euler's   formulas  (nor  are any  of the  other 

computer-de rived solutions except a,. CT_. ^141  CToq), but are nevertheless 

geometrically derivable one from the other.    By taking z = 2/25 in (10), the 

two rational points x = 233/75.  y = 82/75 and x = - 274/225.   y = - 32/225 

on K correspond to a2. a, and the line joining these points intersects K in 

the trivial point x = - 1, y = - 2/25.    A number of similar relationships 

were found to hold among certain sets of the smallest known primitives, 

specifically (a2, <jy a^ a18). (a4. a13I a22). (a6. a45). (al6. a40), 

(<719. a41),and(a36, 0^). 

The geometric methods can be applied to particular numerical solutions 

and in some cases result in new solutions which do not involve overly 

large integers.    Examples are (A, B. C, D) = (15265,  6101,   13085,   12743), 

(27407,  758,   27374,  7217),  and (31731,   5468, 27661,  25596) derived from 

cr^e. a'»ö'an^ ^is* resPect^veiy- 

F.        ANOTHER SOLUTION 

T.   Hayashi I ll] showed that every solution of Diophantine equation 

,  4 x    4        2 3u    + v    = w 

leads to a solution to (1).     We can express his result by stating that if 

u,  v,  w satisfy (15),  then 

,   3 .,   4   ,     4. 0   6 p = 2u    (2u    + v  ) r = 2u  v 

4 4        4 
q = uv w s = vw (2u    + v   ) 

satisfy (3).     Several systems are known which produce from one solution 

u. ,  v.,  w.  to (15) a new solution u?,   v?.   w^. for example, 

u2 = 2ulvlwl v2 = 2vl   " wl        w2 = Wl + 12ulVl • 

The least solutions to (15) are (u,   v,  w) - (1,   1.   2),   (2,   1,   7), and 

(3.   11.   122) which yield,   respectively (A,   B,  C.   D) = (2,   1.   1,   2), 

(542.   103.   514,   359) = a5>   and (4970416.   1139811,   4962397,   1539492). 
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